Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > ORNL finding could help electronics industry enter new phase

Abstract:
Electronic devices of the future could be smaller, faster, more powerful and consume less energy because of a discovery by researchers at the Department of Energy's Oak Ridge National Laboratory

ORNL finding could help electronics industry enter new phase

Oak Ridge, TN | Posted on June 25th, 2009

The key to the finding, published in Science, involves a method to measure intrinsic conducting properties of ferroelectric materials, which for decades have held tremendous promise but have eluded experimental proof. Now, however, ORNL Wigner Fellow Peter Maksymovych and co-authors Stephen Jesse, Art Baddorf and Sergei Kalinin at the Center for Nanophase Materials Sciences believe they may be on a path that will see barriers tumble.

"For years, the challenge has been to develop a nanoscale material that can act as a switch to store binary information," Maksymovych said. "We are excited by our discovery and the prospect of finally being able to exploit the long-conjectured bi-stable electrical conductivity of ferroelectric materials.

"Harnessing this functionality will ultimately enable smart and ultra-dense memory technology."

In the paper, the authors have demonstrated for the first time a giant intrinsic electroresistance in conventional ferroelectric films, where flipping of the spontaneous polarization increased conductance by up to 50,000 percent. Ferroelectric materials can retain their electrostatic polarization and are used for piezoactuators, memory devices and RFID (radio-frequency identification) cards.

"It is as if we open a tiny door in the polar surface for electrons to enter," Maksymovych said. "The size of this door is less than one-millionth of an inch, and it is very likely taking only one-billionth of a second to open."

As the paper illustrates, the key distinction of ferroelectric memory switches is that they can be tuned through thermodynamic properties of ferroelectrics.

"Among other benefits, we can use the tunability to minimize the power needed for recording and reading information and read-write voltages, a key requirement for any viable memory technology," Kalinin said.

Numerous previous works have demonstrated defect-mediated memory, but defects cannot easily be predicted, controlled, analyzed or reduced in size, Maksymovych said. Ferroelectric switching, however, surpasses all of these limitations and will offer unprecedented functionality. The authors believe that using phase transitions such as ferroelectric switching to implement memory and computing is the real fundamental distinction of future information technologies.

Making this research possible is a one-of-a-kind instrument that can simultaneously measure conducting and polar properties of oxide materials with nanometer-scale spatial resolution under a controlled vacuum environment. The instrument was developed and built by Baddorf and colleagues at the Center for Nanophase Materials Sciences. The materials used for this study were grown and provided by collaborators at the University of California at Berkeley.

A link to the paper, "Polarization control of electron tunneling into ferroelectric surfaces," is available here: www.sciencemag.org/cgi/content/abstract/324/5933/1421; Vol. 324, 2009, page 1421. This research was funded by the Office of Basic Energy Sciences within the Department of Energy's Office of Science. UT-Battelle manages Oak Ridge National Laboratory for DOE.

####

About ORNL
The Center for Nanophase Materials Sciences at Oak Ridge National Laboratory is one of the five DOE Nanoscale Science Research Centers, premier national user facilities for interdisciplinary research at the nanoscale. Together the centers comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The centers are located at DOE's Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge, Sandia and Los Alamos national laboratories. For more information about the DOE Nanoscale Science Research Centers, please visit nano.energy.gov.

For more information, please click here

Contacts:
Media Contact: Ron Walli
Communications and External Relations
865.576.0226

Copyright © Oak Ridge National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

European roadmap for graphene science and technology published February 25th, 2015

Quantum research past, present and future for discussion at AAAS February 16th, 2015

World’s first compact rotary 3D printer-cum-scanner unveiled at AAAS by NTU Singapore start-up: With production funded by crowdsourcing, the first unit will be delivered to the United States in March February 16th, 2015

Nanotechnology Electric Vehicle (EV) Market Analysis Report 2015: According to Radiant Insights, Inc February 13th, 2015

Memory Technology

Magnetic vortices in nanodisks reveal information: Researchers from Dresden and Jülich use microwaves to read out information from smallest storage devices March 4th, 2015

The taming of magnetic vortices: Unified theory for skyrmion-materials March 3rd, 2015

Insight into inner magnetic layers: Measurements at BESSY II have shown how spin filters forming within magnetic sandwiches influence tunnel magnetoresistance -- results that can help in designing spintronic component- February 17th, 2015

Dance of the nanovortices February 2nd, 2015

Nanoelectronics

New nanowire structure absorbs light efficiently: Dual-type nanowire arrays can be used in applications such as LEDs and solar cells February 25th, 2015

Ultra-thin nanowires can trap electron 'twisters' that disrupt superconductors February 24th, 2015

Improved fire detection with new ultra-sensitive, ultraviolet light sensor February 17th, 2015

Nanotechnology facility planned in Lund, Sweden: A production facility for start-ups in the field of nanotechnology may be built in the Science Village in Lund, a world-class research and innovation village that is also home to ESS, the European Spallation Source February 15th, 2015

Announcements

MIG Takes a Roll-Up-Your-Sleeves Approach with Revamped MEMS/Sensors Technical Event -- MIG welcomes technologists to MEMS Technical Congress, emphasizes working groups and breakout sessions on emerging MEMS & sensors, tech transfer and integration March 6th, 2015

Phenom-World announces the Phenom XL, world’s fastest desktop SEM to handle large samples March 6th, 2015

Air Bearing Stage / Systems Introduced by PI at Photonics West March 6th, 2015

Get ready for NanoDays! March 5th, 2015

Tools

Phenom-World announces the Phenom XL, world’s fastest desktop SEM to handle large samples March 6th, 2015

Air Bearing Stage / Systems Introduced by PI at Photonics West March 6th, 2015

Keysight Technologies Shifts to Direct Sales of High-Performance Products in North America March 3rd, 2015

International research partnership tricks the light fantastic March 2nd, 2015

Energy

CiQUS researchers obtain high-quality perovskites over large areas by a chemical method March 4th, 2015

UC research partnership explores how to best harness solar power March 2nd, 2015

Learning by eye: Silicon micro-funnels increase the efficiency of solar cells February 25th, 2015

Magnetic nanoparticles enhance performance of solar cells X-ray study points the way to higher energy yields February 25th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE