Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > ORNL finding could help electronics industry enter new phase

Abstract:
Electronic devices of the future could be smaller, faster, more powerful and consume less energy because of a discovery by researchers at the Department of Energy's Oak Ridge National Laboratory

ORNL finding could help electronics industry enter new phase

Oak Ridge, TN | Posted on June 25th, 2009

The key to the finding, published in Science, involves a method to measure intrinsic conducting properties of ferroelectric materials, which for decades have held tremendous promise but have eluded experimental proof. Now, however, ORNL Wigner Fellow Peter Maksymovych and co-authors Stephen Jesse, Art Baddorf and Sergei Kalinin at the Center for Nanophase Materials Sciences believe they may be on a path that will see barriers tumble.

"For years, the challenge has been to develop a nanoscale material that can act as a switch to store binary information," Maksymovych said. "We are excited by our discovery and the prospect of finally being able to exploit the long-conjectured bi-stable electrical conductivity of ferroelectric materials.

"Harnessing this functionality will ultimately enable smart and ultra-dense memory technology."

In the paper, the authors have demonstrated for the first time a giant intrinsic electroresistance in conventional ferroelectric films, where flipping of the spontaneous polarization increased conductance by up to 50,000 percent. Ferroelectric materials can retain their electrostatic polarization and are used for piezoactuators, memory devices and RFID (radio-frequency identification) cards.

"It is as if we open a tiny door in the polar surface for electrons to enter," Maksymovych said. "The size of this door is less than one-millionth of an inch, and it is very likely taking only one-billionth of a second to open."

As the paper illustrates, the key distinction of ferroelectric memory switches is that they can be tuned through thermodynamic properties of ferroelectrics.

"Among other benefits, we can use the tunability to minimize the power needed for recording and reading information and read-write voltages, a key requirement for any viable memory technology," Kalinin said.

Numerous previous works have demonstrated defect-mediated memory, but defects cannot easily be predicted, controlled, analyzed or reduced in size, Maksymovych said. Ferroelectric switching, however, surpasses all of these limitations and will offer unprecedented functionality. The authors believe that using phase transitions such as ferroelectric switching to implement memory and computing is the real fundamental distinction of future information technologies.

Making this research possible is a one-of-a-kind instrument that can simultaneously measure conducting and polar properties of oxide materials with nanometer-scale spatial resolution under a controlled vacuum environment. The instrument was developed and built by Baddorf and colleagues at the Center for Nanophase Materials Sciences. The materials used for this study were grown and provided by collaborators at the University of California at Berkeley.

A link to the paper, "Polarization control of electron tunneling into ferroelectric surfaces," is available here: www.sciencemag.org/cgi/content/abstract/324/5933/1421; Vol. 324, 2009, page 1421. This research was funded by the Office of Basic Energy Sciences within the Department of Energy's Office of Science. UT-Battelle manages Oak Ridge National Laboratory for DOE.

####

About ORNL
The Center for Nanophase Materials Sciences at Oak Ridge National Laboratory is one of the five DOE Nanoscale Science Research Centers, premier national user facilities for interdisciplinary research at the nanoscale. Together the centers comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The centers are located at DOE's Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge, Sandia and Los Alamos national laboratories. For more information about the DOE Nanoscale Science Research Centers, please visit nano.energy.gov.

For more information, please click here

Contacts:
Media Contact: Ron Walli
Communications and External Relations
865.576.0226

Copyright © Oak Ridge National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Printing Silicon on Paper, with Lasers April 21st, 2015

A glass fiber that brings light to a standstill: By coupling photons to atoms, light in a glass fiber can be slowed down to the speed of an express train; for a short while it can even be brought to a complete stop April 9th, 2015

Nanotechnology in Medical Devices Market is expected to reach $8.5 Billion by 2019 March 25th, 2015

Nanotechnology Enabled Drug Delivery to Influence Future Diagnosis and Treatments of Diseases March 21st, 2015

Memory Technology

Heat makes electrons’ spin in magnetic superconductors April 26th, 2015

Northwestern scientists develop first liquid nanolaser: Technology could lead to new way of doing 'lab on a chip' medical diagnostics April 25th, 2015

Drexel materials scientists putting a new spin on computing memory April 22nd, 2015

Phonons, arise! Small electric voltage alters conductivity in key materials April 22nd, 2015

Nanoelectronics

Surface matters: Huge reduction of heat conduction observed in flat silicon channels April 23rd, 2015

New class of 3D-printed aerogels improve energy storage April 22nd, 2015

‘Oxford Instruments Young Nanoscientist India Award 2015’ to Prof. Arindam Ghosh April 20th, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Announcements

Scientists join forces to reveal the mass and shape of single molecules April 27th, 2015

The 16th Trends in Nanotechnology International Conference (TNT 2015) unveils 25 Keynote Speakers: Call for abstracts open April 27th, 2015

Graphenea celebrates fifth anniversary April 27th, 2015

Sensor Designed in Iran Able to Remove Formaldehyde Gas from Environment April 27th, 2015

Tools

Fast and accurate 3-D imaging technique to track optically trapped particles April 24th, 2015

ORNL reports method that takes quantum sensing to new level April 23rd, 2015

Quantum 'paparazzi' film photons in the act of pairing up April 22nd, 2015

Richards-Kortum elected to American Academy of Arts and Sciences: April 22nd, 2015

Energy

Pseudoparticles travel through photoactive material: KIT scientists measure important process in the conversion of light energy -- publication in Nature Communications April 24th, 2015

Scientists Use Nanoscale Building Blocks and DNA 'Glue' to Shape 3D Superlattices: New approach to designing ordered composite materials for possible energy applications April 23rd, 2015

'Holey' graphene for energy storage: Charged holes in graphene increase energy storage capacity April 22nd, 2015

Expanding the reach of metallic glass April 22nd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project