Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > ORNL finding could help electronics industry enter new phase

Abstract:
Electronic devices of the future could be smaller, faster, more powerful and consume less energy because of a discovery by researchers at the Department of Energy's Oak Ridge National Laboratory

ORNL finding could help electronics industry enter new phase

Oak Ridge, TN | Posted on June 25th, 2009

The key to the finding, published in Science, involves a method to measure intrinsic conducting properties of ferroelectric materials, which for decades have held tremendous promise but have eluded experimental proof. Now, however, ORNL Wigner Fellow Peter Maksymovych and co-authors Stephen Jesse, Art Baddorf and Sergei Kalinin at the Center for Nanophase Materials Sciences believe they may be on a path that will see barriers tumble.

"For years, the challenge has been to develop a nanoscale material that can act as a switch to store binary information," Maksymovych said. "We are excited by our discovery and the prospect of finally being able to exploit the long-conjectured bi-stable electrical conductivity of ferroelectric materials.

"Harnessing this functionality will ultimately enable smart and ultra-dense memory technology."

In the paper, the authors have demonstrated for the first time a giant intrinsic electroresistance in conventional ferroelectric films, where flipping of the spontaneous polarization increased conductance by up to 50,000 percent. Ferroelectric materials can retain their electrostatic polarization and are used for piezoactuators, memory devices and RFID (radio-frequency identification) cards.

"It is as if we open a tiny door in the polar surface for electrons to enter," Maksymovych said. "The size of this door is less than one-millionth of an inch, and it is very likely taking only one-billionth of a second to open."

As the paper illustrates, the key distinction of ferroelectric memory switches is that they can be tuned through thermodynamic properties of ferroelectrics.

"Among other benefits, we can use the tunability to minimize the power needed for recording and reading information and read-write voltages, a key requirement for any viable memory technology," Kalinin said.

Numerous previous works have demonstrated defect-mediated memory, but defects cannot easily be predicted, controlled, analyzed or reduced in size, Maksymovych said. Ferroelectric switching, however, surpasses all of these limitations and will offer unprecedented functionality. The authors believe that using phase transitions such as ferroelectric switching to implement memory and computing is the real fundamental distinction of future information technologies.

Making this research possible is a one-of-a-kind instrument that can simultaneously measure conducting and polar properties of oxide materials with nanometer-scale spatial resolution under a controlled vacuum environment. The instrument was developed and built by Baddorf and colleagues at the Center for Nanophase Materials Sciences. The materials used for this study were grown and provided by collaborators at the University of California at Berkeley.

A link to the paper, "Polarization control of electron tunneling into ferroelectric surfaces," is available here: www.sciencemag.org/cgi/content/abstract/324/5933/1421; Vol. 324, 2009, page 1421. This research was funded by the Office of Basic Energy Sciences within the Department of Energy's Office of Science. UT-Battelle manages Oak Ridge National Laboratory for DOE.

####

About ORNL
The Center for Nanophase Materials Sciences at Oak Ridge National Laboratory is one of the five DOE Nanoscale Science Research Centers, premier national user facilities for interdisciplinary research at the nanoscale. Together the centers comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The centers are located at DOE's Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge, Sandia and Los Alamos national laboratories. For more information about the DOE Nanoscale Science Research Centers, please visit nano.energy.gov.

For more information, please click here

Contacts:
Media Contact: Ron Walli
Communications and External Relations
865.576.0226

Copyright © Oak Ridge National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Memory Technology

Surprise discovery in the search for energy efficient information storage August 10th, 2017

Liquid electrolyte contacts for advanced characterization of resistive switching memories July 26th, 2017

Shining rings: A new material emits white light when exposed to electricity: New synthetic approach could spark development of other dynamic materials July 24th, 2017

Pulses of electrons manipulate nanomagnets and store information: Scientists use electron pulses to create and manipulate nanoscale magnetic excitations that can store data July 21st, 2017

Nanoelectronics

GLOBALFOUNDRIES Demonstrates 2.5D High-Bandwidth Memory Solution for Data Center, Networking, and Cloud Applications: Solution leverages 2.5D packaging with low-latency, high-bandwidth memory PHY built on FX-14™ ASIC design system August 9th, 2017

GLOBALFOUNDRIES, Silicon Mobility Deliver the Industry’s First Automotive FPCU to Boost Performance for Hybrid and Electric Vehicles: Silicon Mobility and GF’s 55nm LPx -enabled platform, with SST’s highly-reliable SuperFlash® memory technology, boosts automotive performance, ene August 3rd, 2017

Scientists discover new magnet with nearly massless charge carriers July 29th, 2017

Atomic discovery opens door to greener, faster, smaller electronic circuitry: Scientists find way to correct communication pathways in silicon chips, making them perfect July 27th, 2017

Announcements

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Tools

Scientists from the University of Manchester and Diamond Light Source work with Deben to develop and test a new compression stage to study irradiated graphite at elevated temperatures August 15th, 2017

FRITSCH • Milling and Sizing! Innovations at POWTECH 2017 - Hall 2 • Stand 227 August 9th, 2017

New Quattro Field Emission ESEM Emphasizes Versatility and Ease of Use: Thermo Scientific Quattro ESEM allows materials science researchers to study nanoscale structure in almost any material under a range of environmental conditions August 8th, 2017

Thermo Fisher Scientific’s New Talos F200i S/TEM Delivers Flexible, High-Performance Imaging: New compact S/TEM can be configured to meet specific imaging and analytical requirements for materials characterization in research laboratories August 8th, 2017

Energy

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Fewer defects from a 2-D approach August 15th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project