Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > ORNL finding could help electronics industry enter new phase

Abstract:
Electronic devices of the future could be smaller, faster, more powerful and consume less energy because of a discovery by researchers at the Department of Energy's Oak Ridge National Laboratory

ORNL finding could help electronics industry enter new phase

Oak Ridge, TN | Posted on June 25th, 2009

The key to the finding, published in Science, involves a method to measure intrinsic conducting properties of ferroelectric materials, which for decades have held tremendous promise but have eluded experimental proof. Now, however, ORNL Wigner Fellow Peter Maksymovych and co-authors Stephen Jesse, Art Baddorf and Sergei Kalinin at the Center for Nanophase Materials Sciences believe they may be on a path that will see barriers tumble.

"For years, the challenge has been to develop a nanoscale material that can act as a switch to store binary information," Maksymovych said. "We are excited by our discovery and the prospect of finally being able to exploit the long-conjectured bi-stable electrical conductivity of ferroelectric materials.

"Harnessing this functionality will ultimately enable smart and ultra-dense memory technology."

In the paper, the authors have demonstrated for the first time a giant intrinsic electroresistance in conventional ferroelectric films, where flipping of the spontaneous polarization increased conductance by up to 50,000 percent. Ferroelectric materials can retain their electrostatic polarization and are used for piezoactuators, memory devices and RFID (radio-frequency identification) cards.

"It is as if we open a tiny door in the polar surface for electrons to enter," Maksymovych said. "The size of this door is less than one-millionth of an inch, and it is very likely taking only one-billionth of a second to open."

As the paper illustrates, the key distinction of ferroelectric memory switches is that they can be tuned through thermodynamic properties of ferroelectrics.

"Among other benefits, we can use the tunability to minimize the power needed for recording and reading information and read-write voltages, a key requirement for any viable memory technology," Kalinin said.

Numerous previous works have demonstrated defect-mediated memory, but defects cannot easily be predicted, controlled, analyzed or reduced in size, Maksymovych said. Ferroelectric switching, however, surpasses all of these limitations and will offer unprecedented functionality. The authors believe that using phase transitions such as ferroelectric switching to implement memory and computing is the real fundamental distinction of future information technologies.

Making this research possible is a one-of-a-kind instrument that can simultaneously measure conducting and polar properties of oxide materials with nanometer-scale spatial resolution under a controlled vacuum environment. The instrument was developed and built by Baddorf and colleagues at the Center for Nanophase Materials Sciences. The materials used for this study were grown and provided by collaborators at the University of California at Berkeley.

A link to the paper, "Polarization control of electron tunneling into ferroelectric surfaces," is available here: www.sciencemag.org/cgi/content/abstract/324/5933/1421; Vol. 324, 2009, page 1421. This research was funded by the Office of Basic Energy Sciences within the Department of Energy's Office of Science. UT-Battelle manages Oak Ridge National Laboratory for DOE.

####

About ORNL
The Center for Nanophase Materials Sciences at Oak Ridge National Laboratory is one of the five DOE Nanoscale Science Research Centers, premier national user facilities for interdisciplinary research at the nanoscale. Together the centers comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The centers are located at DOE's Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge, Sandia and Los Alamos national laboratories. For more information about the DOE Nanoscale Science Research Centers, please visit nano.energy.gov.

For more information, please click here

Contacts:
Media Contact: Ron Walli
Communications and External Relations
865.576.0226

Copyright © Oak Ridge National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

NUS researchers invent new test kit for quick, accurate and low-cost screening of diseases: Test results are denoted by a color change and could be further analyzed by a smartphone app, making it attractive as a point-of-care diagnostic device September 19th, 2018

Silver nanoparticles are toxic for aquatic organisms: A research team at the UPV/EHU-University of the Basque Country has analysed how zebrafish are affected in the long term by exposure to silver particles September 19th, 2018

Leti Announces EU Project to Develop Powerful, Inexpensive Sensors with Photonic Integrated Circuits: REDFINCH Members Initially Targeting Applications for Gas Detection and Analysis For Refineries & Petrochemical Industry and Protein Analysis for Dairy Industry September 19th, 2018

Researchers develop microbubble scrubber to destroy dangerous biofilms September 19th, 2018

Memory Technology

Energy-efficient spin current can be controlled by magnetic field and temperature: SCMR effect simplifies the design of fundamental spintronic components August 20th, 2018

Leti & CMP Announce World’s First Multi-Project-Wafer Service with Integrated Silicon OxRAM: Oxide-Based Resistive Ram Memory Platform Development for Backend Memories To Offer Non-Volatility Associated with Embedded Designs August 2nd, 2018

A molecular switch at the edge of graphene July 27th, 2018

Magnetic skyrmions: Not the only ones of their class: Jülich researchers discover a new type of magnetic particle-like object for data storage devices of the future June 28th, 2018

Nanoelectronics

How a tetrahedral substance can be more symmetrical than a spherical atom: A new type of symmetry September 14th, 2018

Laser sintering optimized for printed electronics: New study sheds (laser) light on the best means of laying down thin-film circuitry September 13th, 2018

September 5th, 2018

Rice U. lab probes molecular limit of plasmonics: Optical effect detailed in organic molecules with fewer than 50 atoms September 5th, 2018

Announcements

NUS researchers invent new test kit for quick, accurate and low-cost screening of diseases: Test results are denoted by a color change and could be further analyzed by a smartphone app, making it attractive as a point-of-care diagnostic device September 19th, 2018

Silver nanoparticles are toxic for aquatic organisms: A research team at the UPV/EHU-University of the Basque Country has analysed how zebrafish are affected in the long term by exposure to silver particles September 19th, 2018

Leti Announces EU Project to Develop Powerful, Inexpensive Sensors with Photonic Integrated Circuits: REDFINCH Members Initially Targeting Applications for Gas Detection and Analysis For Refineries & Petrochemical Industry and Protein Analysis for Dairy Industry September 19th, 2018

Researchers develop microbubble scrubber to destroy dangerous biofilms September 19th, 2018

Tools

Carbon nanodots do an ultrafine job with in vitro lung tissue: New experiments highlight the role of charge and size when it comes to carbon nanodots that mimic the effect of nanoscale pollution particles on the human lung. September 12th, 2018

Terahertz spectroscopy enters the single-molecule regime September 7th, 2018

Mirrorcle Demonstrates MEMS-based Programmable Light Source at CES and PW18 August 30th, 2018

Stress-free ALD from Picosun August 28th, 2018

Energy

Leti Announces EU Project to Develop Powerful, Inexpensive Sensors with Photonic Integrated Circuits: REDFINCH Members Initially Targeting Applications for Gas Detection and Analysis For Refineries & Petrochemical Industry and Protein Analysis for Dairy Industry September 19th, 2018

S, N co-doped carbon nanotube-encapsulated CoS2@Co: Efficient and stable catalysts for water splitting September 10th, 2018

September 5th, 2018

Rice U. lab probes molecular limit of plasmonics: Optical effect detailed in organic molecules with fewer than 50 atoms September 5th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project