Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


Home > Press > ORNL finding could help electronics industry enter new phase

Electronic devices of the future could be smaller, faster, more powerful and consume less energy because of a discovery by researchers at the Department of Energy's Oak Ridge National Laboratory

ORNL finding could help electronics industry enter new phase

Oak Ridge, TN | Posted on June 25th, 2009

The key to the finding, published in Science, involves a method to measure intrinsic conducting properties of ferroelectric materials, which for decades have held tremendous promise but have eluded experimental proof. Now, however, ORNL Wigner Fellow Peter Maksymovych and co-authors Stephen Jesse, Art Baddorf and Sergei Kalinin at the Center for Nanophase Materials Sciences believe they may be on a path that will see barriers tumble.

"For years, the challenge has been to develop a nanoscale material that can act as a switch to store binary information," Maksymovych said. "We are excited by our discovery and the prospect of finally being able to exploit the long-conjectured bi-stable electrical conductivity of ferroelectric materials.

"Harnessing this functionality will ultimately enable smart and ultra-dense memory technology."

In the paper, the authors have demonstrated for the first time a giant intrinsic electroresistance in conventional ferroelectric films, where flipping of the spontaneous polarization increased conductance by up to 50,000 percent. Ferroelectric materials can retain their electrostatic polarization and are used for piezoactuators, memory devices and RFID (radio-frequency identification) cards.

"It is as if we open a tiny door in the polar surface for electrons to enter," Maksymovych said. "The size of this door is less than one-millionth of an inch, and it is very likely taking only one-billionth of a second to open."

As the paper illustrates, the key distinction of ferroelectric memory switches is that they can be tuned through thermodynamic properties of ferroelectrics.

"Among other benefits, we can use the tunability to minimize the power needed for recording and reading information and read-write voltages, a key requirement for any viable memory technology," Kalinin said.

Numerous previous works have demonstrated defect-mediated memory, but defects cannot easily be predicted, controlled, analyzed or reduced in size, Maksymovych said. Ferroelectric switching, however, surpasses all of these limitations and will offer unprecedented functionality. The authors believe that using phase transitions such as ferroelectric switching to implement memory and computing is the real fundamental distinction of future information technologies.

Making this research possible is a one-of-a-kind instrument that can simultaneously measure conducting and polar properties of oxide materials with nanometer-scale spatial resolution under a controlled vacuum environment. The instrument was developed and built by Baddorf and colleagues at the Center for Nanophase Materials Sciences. The materials used for this study were grown and provided by collaborators at the University of California at Berkeley.

A link to the paper, "Polarization control of electron tunneling into ferroelectric surfaces," is available here:; Vol. 324, 2009, page 1421. This research was funded by the Office of Basic Energy Sciences within the Department of Energy's Office of Science. UT-Battelle manages Oak Ridge National Laboratory for DOE.


About ORNL
The Center for Nanophase Materials Sciences at Oak Ridge National Laboratory is one of the five DOE Nanoscale Science Research Centers, premier national user facilities for interdisciplinary research at the nanoscale. Together the centers comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The centers are located at DOE's Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge, Sandia and Los Alamos national laboratories. For more information about the DOE Nanoscale Science Research Centers, please visit

For more information, please click here

Media Contact: Ron Walli
Communications and External Relations

Copyright © Oak Ridge National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

'Material universe' yields surprising new particle November 28th, 2015

New 'self-healing' gel makes electronics more flexible November 25th, 2015

Nanocarriers may carry new hope for brain cancer therapy: Berkeley Lab researchers develop nanoparticles that can carry therapeutics across the brain blood barrier November 22nd, 2015

Quantum Spin Could Create Unstoppable, One-Dimensional Electron Waves: New theory points the way forward to transform atom-thin materials into powerful conductors November 18th, 2015

Memory Technology

Nanomagnets: Creating order out of chaos: Dresden physicists engrave nanoscale magnets directly into layer of material November 23rd, 2015

NUS scientists developed super sensitive magnetic sensor: New type of hybrid sensor technology shown to be more than 200 times more sensitive than commercially available sensors November 1st, 2015

Successful industrialization of high-density 3D integrated silicon capacitors for ultra-miniaturized electronic components: Three high-tech SMEs finalize the joint EU-funded PICS project on innovative ALD materials and manufacturing equipment October 22nd, 2015

Researchers from Kiel and Bochum develop new information storage device October 13th, 2015


New Model Presented to Design, Produce Electronic Nanodevices November 6th, 2015

GLOBALFOUNDRIES Achieves 14nm FinFET Technology Success for Next-Generation AMD Products: Leading-edge foundry’s proven silicon technology poised to help enable significant performance and power efficiency improvements for AMD’s next-generation products November 6th, 2015

USF team finds new way of computing with interaction-dependent state change of nanomagnets: University of South Florida engineering researchers find nano-scale magnets could compute complex functions significantly faster than conventional computers October 29th, 2015

Nanoquakes probe new 2-dimensional material: Collaborative research between UC Riverside and the University of Augsburg, Germany, opens up new ways of understanding monolayer films for (opto-)electronic applications October 26th, 2015


'Material universe' yields surprising new particle November 28th, 2015

Iranian Scientists Discover New Catalyst to Remove Pharmaceutical Compounds from Wastewater November 28th, 2015

RAMAN Spectrometry Makes Characterization of Various Nanostructures Possible November 28th, 2015

Nanoparticles Boost Impact Resistance of Special Type of Polymer November 28th, 2015


RAMAN Spectrometry Makes Characterization of Various Nanostructures Possible November 28th, 2015

Medical and aerospace electronics powered by Picosun ALD November 26th, 2015

Using light-force to study single molecules November 23rd, 2015

UCLA nanoscientists develop safer, faster way to remove pollutants from water November 23rd, 2015


Stanford technology makes metal wires on solar cells nearly invisible to light November 27th, 2015

Tandem solar cells are simply better: Higher efficiency thanks to perovskite magic crystal November 24th, 2015

ORNL microscopy captures real-time view of evolving fuel cell catalysts November 21st, 2015

NREL research identifies increased potential for perovskites as a material for solar cells November 21st, 2015

The latest news from around the world, FREE

  Premium Products
Only the news you want to read!
 Learn More
University Technology Transfer & Patents
 Learn More
Full-service, expert consulting
 Learn More

Nanotechnology Now Featured Books


The Hunger Project

Car Brands
Buy website traffic