Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Researchers putting a freeze on oscillator vibrations University of Oregon work could boost quantum information processing, allow more precise measurements

Photo of doctoral student Young-Shin Park
Photo of doctoral student Young-Shin Park

Abstract:
University of Oregon physicists have successfully landed a one-two punch on a tiny glass sphere,
refrigerating it in liquid helium and then dosing its perimeter with a laser beam, to bring its naturally occurring mechanical vibrations to a near standstill.

Researchers putting a freeze on oscillator vibrations University of Oregon work could boost quantum information processing, allow more precise measurements

Eugene, OR | Posted on June 17th, 2009

The findings, published in Nature Physics, could boost advances in information processing that exploits special quantum properties and in precision-measurements for nanotechnology. The ability to freeze mechanical fluctuations, or vibrations, with a laser in so-called optomechanical oscillators also opens a window on the little-explored transition between quantum and classical physics, said principal investigator Hailin Wang.

Wang, a member of the Oregon Center for Optics and a professor in the UO physics department, and his doctoral student Young-Shin Park performed the research under grants from the National Science Foundation and Army Research Laboratory through the Oregon Nanoscience and Microtechnologies Institute (ONAMI).

In nanotechnology, understanding phonons -- vibrations that carry energy -- is becoming increasingly important. For their project, Wang and Park purposely manufactured a deformed silica microsphere about 30 microns in diameter, about the size of a human hair.

A combination of cryogenic pre-cooling of the sphere to 1.4 Kelvin (minus 457.15 degrees Fahrenheit) and hitting the sphere's outer surface with a laser allowed researchers to extract energy from the mechanical oscillator and lower the level of phonon excitations to near 40 quanta. Ultimately, Wang said, the goal is to reduce that level, known as the average phonon occupation, to one quantum.

"Our goal is to get to and work with the quantum mechanical ground state in which there is very little excitation or displacement," Wang said. Reaching one quantum would require a temperature just a few thousandths of a degree from absolute zero (minus 459.67 degrees Fahrenheit).

####

About University of Oregon
The University of Oregon is a world-class teaching and research institution and Oregon's flagship public university. The UO is a member of the Association of American Universities (AAU), an organization made up of the 62 leading public and private research institutions in the United States and Canada. The University of Oregon is one of only two AAU members in the Pacific Northwest.

For more information, please click here

Contacts:
Hailin Wang
professor of physics
UO College of Arts and Sciences
541-346-4758 or 4807

Copyright © University of Oregon

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Watch Video

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Videos/Movies

New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022

Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022

Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022

Visualizing the invisible: New fluorescent DNA label reveals nanoscopic cancer features March 4th, 2022

Quantum Computing

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Photonics/Optics/Lasers

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Quantum nanoscience

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Bridging light and electrons January 12th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project