Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Researchers putting a freeze on oscillator vibrations University of Oregon work could boost quantum information processing, allow more precise measurements

Photo of doctoral student Young-Shin Park
Photo of doctoral student Young-Shin Park

Abstract:
University of Oregon physicists have successfully landed a one-two punch on a tiny glass sphere,
refrigerating it in liquid helium and then dosing its perimeter with a laser beam, to bring its naturally occurring mechanical vibrations to a near standstill.

Researchers putting a freeze on oscillator vibrations University of Oregon work could boost quantum information processing, allow more precise measurements

Eugene, OR | Posted on June 17th, 2009

The findings, published in Nature Physics, could boost advances in information processing that exploits special quantum properties and in precision-measurements for nanotechnology. The ability to freeze mechanical fluctuations, or vibrations, with a laser in so-called optomechanical oscillators also opens a window on the little-explored transition between quantum and classical physics, said principal investigator Hailin Wang.

Wang, a member of the Oregon Center for Optics and a professor in the UO physics department, and his doctoral student Young-Shin Park performed the research under grants from the National Science Foundation and Army Research Laboratory through the Oregon Nanoscience and Microtechnologies Institute (ONAMI).

In nanotechnology, understanding phonons -- vibrations that carry energy -- is becoming increasingly important. For their project, Wang and Park purposely manufactured a deformed silica microsphere about 30 microns in diameter, about the size of a human hair.

A combination of cryogenic pre-cooling of the sphere to 1.4 Kelvin (minus 457.15 degrees Fahrenheit) and hitting the sphere's outer surface with a laser allowed researchers to extract energy from the mechanical oscillator and lower the level of phonon excitations to near 40 quanta. Ultimately, Wang said, the goal is to reduce that level, known as the average phonon occupation, to one quantum.

"Our goal is to get to and work with the quantum mechanical ground state in which there is very little excitation or displacement," Wang said. Reaching one quantum would require a temperature just a few thousandths of a degree from absolute zero (minus 459.67 degrees Fahrenheit).

####

About University of Oregon
The University of Oregon is a world-class teaching and research institution and Oregon's flagship public university. The UO is a member of the Association of American Universities (AAU), an organization made up of the 62 leading public and private research institutions in the United States and Canada. The University of Oregon is one of only two AAU members in the Pacific Northwest.

For more information, please click here

Contacts:
Hailin Wang
professor of physics
UO College of Arts and Sciences
541-346-4758 or 4807

Copyright © University of Oregon

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Watch Video

Related News Press

News and information

Creation of 'Rocker' protein opens way for new smart molecules in medicine, other fields December 18th, 2014

How does enzymatic pretreatment affect the nanostructure and reaction space of lignocellulosic biomass? December 18th, 2014

Silicon Valley-Based Foresight Valuation Launches STR-IP™, a New Initiative for Startups to Discover the Value of Their Intellectual Property December 18th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Videos/Movies

“Line dancing bacteria win the 2014 Dolomite and Lab on a Chip Video Competition” December 16th, 2014

Microbullet hits confirm graphene's strength: Rice University lab test material for suitability in body armor, spacecraft protection December 1st, 2014

Purdue 3-D printing innovation capable of making stronger, lighter metal works for auto, aerospace industries November 20th, 2014

New way to move atomically thin semiconductors for use in flexible devices November 13th, 2014

Quantum Computing

Nanoscale resistors for quantum devices: The electrical characteristics of new thin-film chromium oxide resistors that can be tuned by controlling the oxygen content detailed in the 'Journal of Applied Physics' December 9th, 2014

Electron pairs on demand: Controlled emission and spatial splitting of electron pairs demonstrated December 4th, 2014

Graphene layer reads optical information from nanodiamonds electronically: Possible read head for quantum computers December 1st, 2014

University of Minnesota engineers make sound loud enough to bend light on a computer chip: Device could improve wireless communications systems November 28th, 2014

Discoveries

Creation of 'Rocker' protein opens way for new smart molecules in medicine, other fields December 18th, 2014

How does enzymatic pretreatment affect the nanostructure and reaction space of lignocellulosic biomass? December 18th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Iranian Researchers Produce Electrical Pieces Usable in Human Body December 18th, 2014

Announcements

Creation of 'Rocker' protein opens way for new smart molecules in medicine, other fields December 18th, 2014

How does enzymatic pretreatment affect the nanostructure and reaction space of lignocellulosic biomass? December 18th, 2014

Silicon Valley-Based Foresight Valuation Launches STR-IP™, a New Initiative for Startups to Discover the Value of Their Intellectual Property December 18th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Photonics/Optics/Lasers

Nanoshaping method points to future manufacturing technology December 11th, 2014

Stacking two-dimensional materials may lower cost of semiconductor devices December 11th, 2014

Defects are perfect in laser-induced graphene: Rice University lab discovers simple way to make material for energy storage, electronics December 10th, 2014

New technique allows low-cost creation of 3-D nanostructures December 8th, 2014

Quantum nanoscience

Fraud-proof credit card possible because of quantum physics December 16th, 2014

Nanoscale resistors for quantum devices: The electrical characteristics of new thin-film chromium oxide resistors that can be tuned by controlling the oxygen content detailed in the 'Journal of Applied Physics' December 9th, 2014

High photosensitivity 2D-few-layered molybdenum diselenide phototransistors December 8th, 2014

Electron pairs on demand: Controlled emission and spatial splitting of electron pairs demonstrated December 4th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE