Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > SEMATECH to Reveal Breakthroughs in Controlling Parasitic Contactt Resistance in Advanced CMOS Devices

Abstract:
Technical experts to showcase new research results in advanced gate stack, high mobility channels, and 3D interconnect TSVs at VLSI symposium.

SEMATECH to Reveal Breakthroughs in Controlling Parasitic Contactt Resistance in Advanced CMOS Devices

Kyoto, Japan | Posted on June 15th, 2009

SEMATECH's continued leadership in developing, screening, and characterizing new materials, tools, and processes that enable CMOS scaling and emerging technologies will be further demonstrated during the 2009 VLSI Technology Symposium on June 15-17, 2009, at the Rihga Royal Hotel in Kyoto, Japan.

In one area of investigation, technologists from SEMATECH's Materials and Emerging Technologies program have demonstrated significant reductions in Schottky barrier height and contact resistance that are critical for continued enhancement of device performance in future technology nodes.

As scaling continues, one of the most pressing concerns of CMOS technology beyond the 45 nm node is the contact resistance in source/drain regions, which comes from a relatively high Schottky barrier between n-type doped Si and nickel silicide. SEMATECH researchers will outline recent progress in exploring alternative interface structures, reducing the parasitic resistances of the source and drain regions and improving mobility.

"Through intense research and development efforts, SEMATECH has developed manufacturable solutions with new materials and interfaces that reduce source-drain parasitic resistance. These practical implementation approaches enable future advanced gate and high-mobility channels," said Raj Jammy, SEMATECH's vice president of emerging technologies. "We're continuing to push CMOS technology to the limits, while we test the feasibility of emerging next-generation technologies."

SEMATECH driven advancements in materials and device structure will be highlighted at the symposium, including the following:

· A newly offered focus session, "3D-System Integration," SEMATECH's director of 3D interconnect program, Sitaram Arkalgud, will deliver an invited talk highlighting the importance of 3D TSV integration for future technology generations.

· An expert panel discussion, "Key Technology Options for 16 nm CMOS and Beyond - Breaking the Barriers" will include SEMATECH's Raj Jammy.

· The panel "Is TSV 3D LSI's and Packaging Finally Ready or Is It Just Another Fantasy?," co-moderated by Sitaram Arkalgud, will address the question of which applications are driving the development of TSVs.

Additionally, experts from SEMATECH's Materials and Emerging Technologies program will present six technical papers:

* Gate First High-k/Metal Gate Stacks with Zero SiOx Interface Achieving EOT=0.59nm for 16nm Application* - Demonstrates for the first time a HfOx films with a zero low-k SiOx interface has better scalability than exotic higher-k materials, and is a practical, scalable option for today's industry-standard Hf-based high-k films.**

*V**th** Variation and Strain Control of High Ge% Thin SiGe Channels by Millisecond Anneal Realizing High Performance pMOSFET Beyond 16nm Node* - Explores key parameters for controlling threshold voltage variation and strain maintenance of gate first SiGe channel pMOSFETs.**

*Selective Phase Modulation of NiSi Using N-Ion Implantation for High Performance Dopant- Segregated Source/Drain n-Channel MOSFETs* - Investigates dual phase-modulated Ni silicide for reducing the Schottky barrier and series resistance in dopant-segregated source/drain nMOSFETs.

*CMOS Band-Edge Schottky Barrier Heights Using Dielectric-Dipole Mitigated (DDM) Metal/Si for Source/Drain Contact Resistance Reduction* -* *Demonstrates for the first time Schottky barrier height tuning using interfacial SiO2 and dual high-k dielectrics.

**A Scalable and Highly Manufacturable Single Metal Gate/High-k CMOS Integration for Sub-32nm Technology for LSTP Applications* - Outlines a simple, scalable gate-first integration option for manufacturing high-k metal gate CMOS transistors targeted for sub-32nm low standby power applications. **

*Mechanisms for Low On-State Current of Ge (SiGe) nMOSFETs: A Comparative Study on Gate Stack, Resistance, and Orientation-Dependent Effective Masses* - Reports the results of a systematic study to understand the low drive currents observed in Ge-based nMOSFETs.**

The International Symposium on VLSI Technology, Technology and Circuits is sponsored by the IEEE Electron Devices and Solid-State Circuits societies and the Japan Society of Applied Physics in cooperation with the Institute of Electronics, Information and Communication Engineers. VLSI Japan is one of many industry forums SEMATECH uses to collaborate with scientists and engineers from corporations, universities, and other research institutions, many of whom are research partners.

####

About SEMATECH
For over 20 years, SEMATECH® (*www.sematech.org*), the global consortium of
leading semiconductor manufacturers, has set global direction, enabled
flexible collaboration, and bridged strategic R&D to manufacturing. Today,
we continue accelerating the next technology revolution with our
nanoelectronics and emerging technology partners.

For more information, please click here

Contacts:
Erica McGill
SEMATECH | Media Relations
257 Fuller Road | Suite 2200 | Albany, NY | 12203
o: 518-649-1041
m: 518-487-8256

Copyright © SEMATECH

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Iranian Researchers Produce Electrical Pieces Usable in Human Body December 18th, 2014

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Chip Technology

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

Pb islands in a sea of graphene magnetise the material of the future December 16th, 2014

Stanford team combines logic, memory to build a 'high-rise' chip: Today circuit cards are laid out like single-story towns; Futuristic architecture builds layers of logic and memory into skyscraper chips that would be smaller, faster, cheaper -- and taller December 15th, 2014

Stacking two-dimensional materials may lower cost of semiconductor devices December 11th, 2014

Nanoelectronics

Stacking two-dimensional materials may lower cost of semiconductor devices December 11th, 2014

Defects are perfect in laser-induced graphene: Rice University lab discovers simple way to make material for energy storage, electronics December 10th, 2014

Nanoscale resistors for quantum devices: The electrical characteristics of new thin-film chromium oxide resistors that can be tuned by controlling the oxygen content detailed in the 'Journal of Applied Physics' December 9th, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Announcements

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Iranian Researchers Produce Electrical Pieces Usable in Human Body December 18th, 2014

Unraveling the light of fireflies December 17th, 2014

First Home-Made Edible Herbal Nanodrug Presented to Pharmacies across Iran December 17th, 2014

Events/Classes

Bruker Introduces BioScope Resolve High-Resolution BioAFM System: Featuring PeakForce Tapping for Quantitative Bio-Mechanical Property Mapping December 16th, 2014

TCL Launches World’s Most Advanced TV in the World’s Largest Market: New Quantum Dot TVs with Color IQ™ Optics Deliver OLED-Quality Color at a Fraction of the Price December 15th, 2014

Stanford team combines logic, memory to build a 'high-rise' chip: Today circuit cards are laid out like single-story towns; Futuristic architecture builds layers of logic and memory into skyscraper chips that would be smaller, faster, cheaper -- and taller December 15th, 2014

PETA science consortium to present at Society for Risk Analysis meeting December 10th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE