Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Researchers create freestanding nanoparticle films without fillers

Assistant Professor of Physics James Dickerson (left) and graduate student Saad Hasan. (Photo by Daniel DuBois)
Assistant Professor of Physics James Dickerson (left) and graduate student Saad Hasan. (Photo by Daniel DuBois)

Abstract:
Nanoparticle films are no longer a delicate matter: Vanderbilt physicists have found a way to make them strong enough so they don't disintegrate at the slightest touch.

Researchers create freestanding nanoparticle films without fillers

Posted on June 9th, 2009

In the last 25 years, ever since scientists figured out how to create nanoparticles - ultrafine particles with diameters less than 100 nanometers - they have come up with a number of different methods to mold them into thin films which have a variety of interesting potential applications ranging from semiconductor fabrication to drug delivery, solid state lighting to flexible television and computer displays.

Until now these films have had a common problem: lack of cohesion. Nanoparticles typically consist of an inorganic core coated with a thin layer of organic molecules. These particles are not very sticky so they don't form coherent thin films unless they are encapsulated in a polymer coating or mixed with molecules called chemical "cross-linkers" that act like glue to stick the nanoparticles together.

"Adding this extra material can complicate the fabrication of nanoparticle films and make them more expensive. In addition, the added material, usually a polymer, can modify the physical properties that make these films so interesting," says James Dickerson, assistant professor of physics at Vanderbilt, who headed the research group that developed freestanding nanoparticle films without any additives.

The properties of the new films and the method that the researchers use to create them is described in the article "Sacrificial layer electrophoretic deposition of freestanding multilayered nanoparticle films" published online in the journal Chemical Communications on May 27, 2009.

"Our films are so resilient that we can pick them up with a pair of tweezers and move them around on a surface without tearing," says Dickerson. "This makes it particularly easy to put them into microelectronic devices, such as computer chips."

Dickerson considers the most straightforward applications for his films to be in semiconductor manufacturing to aid in the continued miniaturization of digital circuitry and in the production of flexible television and computer screens.

A key component in the transistors in integrated circuits is an insulating layer that separates the gate, which turns current flow on and off, from the channel through which the current flows. Traditionally, semiconductor manufacturers have used silicon dioxide for this purpose. As transistors have shrunk, however, they have been forced to make this layer thinner and thinner until they reached the point where electrons leak through and sap the power from the device. This has led semiconductor manufacturers to retool their process to use "high-k" dielectric materials, such as hafnium oxide, because they have much higher electrical resistance.

"We have made high-k nanoparticle films that could be cheaper and more effective than the high-k materials the manufacturers are currently using," Dickerson says.

In addition, the physicist argues that the films have properties that make them ideal for flexible television and computer screens. They are very flexible and don't show any signs of cracking when they are flexed repeatedly. They are also made using a technique called electrophoretic deposition (EPD) that is well suited for creating patterned material and is compatible with fluorescent materials that can form the red, green and blue pixels used in flat panel television screens and computer displays.

EDP is a wet method. Nanoparticles are placed in a solution along with a pair of electrodes. When an electric current is applied, it creates an electrical field in the liquid that attracts the nanoparticles, which coat the electrodes. Using colloids, mixtures with particles 10 to 1,000 times larger than nanoparticles, EDP is widely used to apply coatings to complex metal parts such as automobile bodies, prosthetic devices, appliances and beverage containers. It is only recently that researchers like Dickerson have begun applying the technique to nanoparticles.

"The science of colloidal EDP is well known but the particles are substantially larger than the solvent molecules. Many nanoparticles, however, are about the same size as the solvent molecules, which makes the process considerably more complicated and difficult to control," Dickerson explains.

To get the method to work, in fact, Dickerson and his colleagues had to invent a new form of EDP, which they call sacrificial layer electrophoretic deposition. They added a spun-cast layer of polymer to the electrodes that serves as a pattern that organizes the nanoparticles as they are deposited. Then, after the deposition process is completed, they dissolve (sacrifice) the polymer layer to free the nanoparticle film.

According to the researchers, films made in this fashion stick together because the electrical field slams the nanoparticles into the film with sufficient force to pack the particles together tightly enough to allow naturally attractive inter-particle forces to bind the particles together.

So far the Dickerson group has used the technique to make films out of two different types of nanoparticles - iron oxide and cadmium selenide - and they believe the technique can be used with a wide variety of other nanoparticles.

"The technique is liberating because you can make these films from the materials you want and use them where you want," Dickerson says.

The co-authors on the paper are graduate students Saad A. Hasan and Dustin W. Kavich. The research was funded by a grant from Vanderbilt University.

####

About Vanderbilt University
Vanderbilt University is a center for scholarly research, informed and creative teaching, and service to the community and society at large. Vanderbilt will uphold the highest standards and be a leader in the

* quest for new knowledge through scholarship,
* dissemination of knowledge through teaching and outreach,
* creative experimentation of ideas and concepts.

In pursuit of these goals, Vanderbilt values most highly

* intellectual freedom that supports open inquiry,
* equality, compassion, and excellence in all endeavors.

Contacts:
Media Contact
David F. Salisbury
(615) 322-NEWS

Copyright © Vanderbilt University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Multimedia Version of article

Related News Press

Physics

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

An Archimedes' screw for groups of quantum particles November 19th, 2016

Thin films

ANU invention to inspire new night-vision specs December 7th, 2016

Display technology/LEDs/SS Lighting/OLEDs

Trace metal recombination centers kill LED efficiency: UCSB researchers warn that trace amounts of transition metal impurities act as recombination centers in gallium nitride semiconductors November 3rd, 2016

Diamond nanothread: Versatile new material could prove priceless for manufacturing: Would you dress in diamond nanothreads? It's not as far-fetched as you might think November 3rd, 2016

Researchers surprised at the unexpected hardness of gallium nitride: A Lehigh University team discovers that the widely used semiconducting material is almost as wear-resistant as diamonds October 31st, 2016

Inspiration from the ocean: An interdisciplinary team of researchers at UC Santa Barbara has developed a non-toxic, high-quality surface treatment for organic field-effect transistors October 18th, 2016

Possible Futures

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Chip Technology

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Leti IEDM 2016 Paper Clarifies Correlation between Endurance, Window Margin and Retention in RRAM for First Time: Paper Presented at IEDM 2016 Offers Ways to Reconcile High-cycling Requirements and Instability at High Temperatures in Resistive RAM December 6th, 2016

Tokyo Institute of Technology research: 3D solutions to energy savings in silicon power transistors December 6th, 2016

Nanomedicine

Arrowhead Pharmaceuticals to Webcast Fiscal 2016 Year End Results December 7th, 2016

Fast, efficient sperm tails inspire nanobiotechnology December 5th, 2016

Journal Nanotechnology Progress International (JONPI) Volume 6, issue 2 coming out soon! December 5th, 2016

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Nanoelectronics

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Leti IEDM 2016 Paper Clarifies Correlation between Endurance, Window Margin and Retention in RRAM for First Time: Paper Presented at IEDM 2016 Offers Ways to Reconcile High-cycling Requirements and Instability at High Temperatures in Resistive RAM December 6th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Journal Nanotechnology Progress International (JONPI) Volume 6, issue 2 coming out soon! December 5th, 2016

Discoveries

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Announcements

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Nanobiotechnology

Arrowhead Pharmaceuticals to Webcast Fiscal 2016 Year End Results December 7th, 2016

Fast, efficient sperm tails inspire nanobiotechnology December 5th, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Nanobiotix Provides Update on Global Development of Lead Product NBTXR3: Seven clinical trials across the world: More than 2/3 of STS patients recruited in the “act.in.sarc” Phase II/III trial: Phase I/II prostate cancer trial now recruiting in the U.S. November 28th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project