Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Researchers create freestanding nanoparticle films without fillers

Assistant Professor of Physics James Dickerson (left) and graduate student Saad Hasan. (Photo by Daniel DuBois)
Assistant Professor of Physics James Dickerson (left) and graduate student Saad Hasan. (Photo by Daniel DuBois)

Abstract:
Nanoparticle films are no longer a delicate matter: Vanderbilt physicists have found a way to make them strong enough so they don't disintegrate at the slightest touch.

Researchers create freestanding nanoparticle films without fillers

Posted on June 9th, 2009

In the last 25 years, ever since scientists figured out how to create nanoparticles - ultrafine particles with diameters less than 100 nanometers - they have come up with a number of different methods to mold them into thin films which have a variety of interesting potential applications ranging from semiconductor fabrication to drug delivery, solid state lighting to flexible television and computer displays.

Until now these films have had a common problem: lack of cohesion. Nanoparticles typically consist of an inorganic core coated with a thin layer of organic molecules. These particles are not very sticky so they don't form coherent thin films unless they are encapsulated in a polymer coating or mixed with molecules called chemical "cross-linkers" that act like glue to stick the nanoparticles together.

"Adding this extra material can complicate the fabrication of nanoparticle films and make them more expensive. In addition, the added material, usually a polymer, can modify the physical properties that make these films so interesting," says James Dickerson, assistant professor of physics at Vanderbilt, who headed the research group that developed freestanding nanoparticle films without any additives.

The properties of the new films and the method that the researchers use to create them is described in the article "Sacrificial layer electrophoretic deposition of freestanding multilayered nanoparticle films" published online in the journal Chemical Communications on May 27, 2009.

"Our films are so resilient that we can pick them up with a pair of tweezers and move them around on a surface without tearing," says Dickerson. "This makes it particularly easy to put them into microelectronic devices, such as computer chips."

Dickerson considers the most straightforward applications for his films to be in semiconductor manufacturing to aid in the continued miniaturization of digital circuitry and in the production of flexible television and computer screens.

A key component in the transistors in integrated circuits is an insulating layer that separates the gate, which turns current flow on and off, from the channel through which the current flows. Traditionally, semiconductor manufacturers have used silicon dioxide for this purpose. As transistors have shrunk, however, they have been forced to make this layer thinner and thinner until they reached the point where electrons leak through and sap the power from the device. This has led semiconductor manufacturers to retool their process to use "high-k" dielectric materials, such as hafnium oxide, because they have much higher electrical resistance.

"We have made high-k nanoparticle films that could be cheaper and more effective than the high-k materials the manufacturers are currently using," Dickerson says.

In addition, the physicist argues that the films have properties that make them ideal for flexible television and computer screens. They are very flexible and don't show any signs of cracking when they are flexed repeatedly. They are also made using a technique called electrophoretic deposition (EPD) that is well suited for creating patterned material and is compatible with fluorescent materials that can form the red, green and blue pixels used in flat panel television screens and computer displays.

EDP is a wet method. Nanoparticles are placed in a solution along with a pair of electrodes. When an electric current is applied, it creates an electrical field in the liquid that attracts the nanoparticles, which coat the electrodes. Using colloids, mixtures with particles 10 to 1,000 times larger than nanoparticles, EDP is widely used to apply coatings to complex metal parts such as automobile bodies, prosthetic devices, appliances and beverage containers. It is only recently that researchers like Dickerson have begun applying the technique to nanoparticles.

"The science of colloidal EDP is well known but the particles are substantially larger than the solvent molecules. Many nanoparticles, however, are about the same size as the solvent molecules, which makes the process considerably more complicated and difficult to control," Dickerson explains.

To get the method to work, in fact, Dickerson and his colleagues had to invent a new form of EDP, which they call sacrificial layer electrophoretic deposition. They added a spun-cast layer of polymer to the electrodes that serves as a pattern that organizes the nanoparticles as they are deposited. Then, after the deposition process is completed, they dissolve (sacrifice) the polymer layer to free the nanoparticle film.

According to the researchers, films made in this fashion stick together because the electrical field slams the nanoparticles into the film with sufficient force to pack the particles together tightly enough to allow naturally attractive inter-particle forces to bind the particles together.

So far the Dickerson group has used the technique to make films out of two different types of nanoparticles - iron oxide and cadmium selenide - and they believe the technique can be used with a wide variety of other nanoparticles.

"The technique is liberating because you can make these films from the materials you want and use them where you want," Dickerson says.

The co-authors on the paper are graduate students Saad A. Hasan and Dustin W. Kavich. The research was funded by a grant from Vanderbilt University.

####

About Vanderbilt University
Vanderbilt University is a center for scholarly research, informed and creative teaching, and service to the community and society at large. Vanderbilt will uphold the highest standards and be a leader in the

* quest for new knowledge through scholarship,
* dissemination of knowledge through teaching and outreach,
* creative experimentation of ideas and concepts.

In pursuit of these goals, Vanderbilt values most highly

* intellectual freedom that supports open inquiry,
* equality, compassion, and excellence in all endeavors.

Contacts:
Media Contact
David F. Salisbury
(615) 322-NEWS

Copyright © Vanderbilt University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Multimedia Version of article

Related News Press

Physics

Rice physicist emerges as leader in quantum materials research: Nevidomskyy wins both NSF CAREER Award and Cottrell Scholar Award August 20th, 2014

Promising Ferroelectric Materials Suffer From Unexpected Electric Polarizations: Brookhaven Lab scientists find surprising locked charge polarizations that impede performance in next-gen materials that could otherwise revolutionize data-driven devices August 18th, 2014

Moore quantum materials: Recipe for serendipity - Moore Foundation grant will allow Rice physicist to explore quantum materials August 12th, 2014

Harry Atwater and Albert Polman receive the Julius Springer Prize for Applied Physics 2014: Scientists honored for their pioneering achievements in plasmonics and nanophotonics August 8th, 2014

Diamond defect interior design: Planting imperfections called 'NV centers' at specific spots within a diamond lattice could advance quantum computing and atomic-scale measurement August 5th, 2014

Thin films

An Inkjet-Printed Field-Effect Transistor for Label-Free Biosensing August 11th, 2014

Advanced thin-film technique could deliver long-lasting medication: Nanoscale, biodegradable drug-delivery method could provide a year or more of steady doses August 6th, 2014

New Material Allows for Ultra-Thin Solar Cells August 4th, 2014

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

Oregon chemists eye improved thin films with metal substitution: Solution-based inorganic process could drive more efficient electronics and solar devices July 21st, 2014

Display technology/LEDs/SS Lighting/OLEDs

LEDs made from ‘wonder material’ perovskite: Colourful LEDs made from a material known as perovskite could lead to LED displays which are both cheaper and easier to manufacture in future August 5th, 2014

Possible Futures

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Chip Technology

Electrical engineers take major step toward photonic circuits: Team invents non-metallic metamaterial that enables them to 'compress' and contain light August 19th, 2014

Promising Ferroelectric Materials Suffer From Unexpected Electric Polarizations: Brookhaven Lab scientists find surprising locked charge polarizations that impede performance in next-gen materials that could otherwise revolutionize data-driven devices August 18th, 2014

AI Technology (AIT) Introduces Novel High Temperature Large Area Underfill with Proven Stress Absorption August 15th, 2014

Iranian Scientists Stabilize Protein on Highly Stable Electrode Surface August 14th, 2014

Nanomedicine

Ultra-short pulse lasers & Positioning August 21st, 2014

Nanotechnology Helps Production of Super Adsorbent Polymers August 21st, 2014

Newly-Developed Nanobiosensor Quickly Diagnoses Cancer August 20th, 2014

Graphene rubber bands could stretch limits of current healthcare, new research finds August 19th, 2014

Nanoelectronics

A*STAR and industry form S$200M semiconductor R&D July 25th, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

3-D nanostructure could benefit nanoelectronics, gas storage: Rice U. researchers predict functional advantages of 3-D boron nitride July 15th, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Discoveries

A breakthrough in imaging gold nanoparticles to atomic resolution by electron microscopy August 22nd, 2014

Shaping the Future of Nanocrystals: Berkeley Lab Researchers Obtain First Direct Observation of Facet Formation in Nanocubes August 21st, 2014

Water window imaging opportunity: A new theoretical study elucidates mechanisms that could help in producing coherent radiations, ultimately promoting high-contrast imaging of biological samples August 21st, 2014

Nanotechnology Helps Production of Super Adsorbent Polymers August 21st, 2014

Announcements

A breakthrough in imaging gold nanoparticles to atomic resolution by electron microscopy August 22nd, 2014

Ultra-short pulse lasers & Positioning August 21st, 2014

Malvern’s Dr Alan Rawle talks TLAs in plenary lecture at Particulate Systems Analysis conference August 21st, 2014

Water window imaging opportunity: A new theoretical study elucidates mechanisms that could help in producing coherent radiations, ultimately promoting high-contrast imaging of biological samples August 21st, 2014

Nanobiotechnology

The channel that relaxes DNA: Relaxing DNA strands by using nano-channels: Instructions for use August 20th, 2014

Сalculations with Nanoscale Smart Particles August 19th, 2014

Interaction between Drug, DNA for Designing Anticancer Drugs Studied in Iran August 17th, 2014

Scientists fold RNA origami from a single strand: RNA origami is a new method for organizing molecules on the nanoscale. Using just a single strand of RNA, this technique can produce many complicated shapes. August 14th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE