Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Researchers create freestanding nanoparticle films without fillers

Assistant Professor of Physics James Dickerson (left) and graduate student Saad Hasan. (Photo by Daniel DuBois)
Assistant Professor of Physics James Dickerson (left) and graduate student Saad Hasan. (Photo by Daniel DuBois)

Abstract:
Nanoparticle films are no longer a delicate matter: Vanderbilt physicists have found a way to make them strong enough so they don't disintegrate at the slightest touch.

Researchers create freestanding nanoparticle films without fillers

Posted on June 9th, 2009

In the last 25 years, ever since scientists figured out how to create nanoparticles - ultrafine particles with diameters less than 100 nanometers - they have come up with a number of different methods to mold them into thin films which have a variety of interesting potential applications ranging from semiconductor fabrication to drug delivery, solid state lighting to flexible television and computer displays.

Until now these films have had a common problem: lack of cohesion. Nanoparticles typically consist of an inorganic core coated with a thin layer of organic molecules. These particles are not very sticky so they don't form coherent thin films unless they are encapsulated in a polymer coating or mixed with molecules called chemical "cross-linkers" that act like glue to stick the nanoparticles together.

"Adding this extra material can complicate the fabrication of nanoparticle films and make them more expensive. In addition, the added material, usually a polymer, can modify the physical properties that make these films so interesting," says James Dickerson, assistant professor of physics at Vanderbilt, who headed the research group that developed freestanding nanoparticle films without any additives.

The properties of the new films and the method that the researchers use to create them is described in the article "Sacrificial layer electrophoretic deposition of freestanding multilayered nanoparticle films" published online in the journal Chemical Communications on May 27, 2009.

"Our films are so resilient that we can pick them up with a pair of tweezers and move them around on a surface without tearing," says Dickerson. "This makes it particularly easy to put them into microelectronic devices, such as computer chips."

Dickerson considers the most straightforward applications for his films to be in semiconductor manufacturing to aid in the continued miniaturization of digital circuitry and in the production of flexible television and computer screens.

A key component in the transistors in integrated circuits is an insulating layer that separates the gate, which turns current flow on and off, from the channel through which the current flows. Traditionally, semiconductor manufacturers have used silicon dioxide for this purpose. As transistors have shrunk, however, they have been forced to make this layer thinner and thinner until they reached the point where electrons leak through and sap the power from the device. This has led semiconductor manufacturers to retool their process to use "high-k" dielectric materials, such as hafnium oxide, because they have much higher electrical resistance.

"We have made high-k nanoparticle films that could be cheaper and more effective than the high-k materials the manufacturers are currently using," Dickerson says.

In addition, the physicist argues that the films have properties that make them ideal for flexible television and computer screens. They are very flexible and don't show any signs of cracking when they are flexed repeatedly. They are also made using a technique called electrophoretic deposition (EPD) that is well suited for creating patterned material and is compatible with fluorescent materials that can form the red, green and blue pixels used in flat panel television screens and computer displays.

EDP is a wet method. Nanoparticles are placed in a solution along with a pair of electrodes. When an electric current is applied, it creates an electrical field in the liquid that attracts the nanoparticles, which coat the electrodes. Using colloids, mixtures with particles 10 to 1,000 times larger than nanoparticles, EDP is widely used to apply coatings to complex metal parts such as automobile bodies, prosthetic devices, appliances and beverage containers. It is only recently that researchers like Dickerson have begun applying the technique to nanoparticles.

"The science of colloidal EDP is well known but the particles are substantially larger than the solvent molecules. Many nanoparticles, however, are about the same size as the solvent molecules, which makes the process considerably more complicated and difficult to control," Dickerson explains.

To get the method to work, in fact, Dickerson and his colleagues had to invent a new form of EDP, which they call sacrificial layer electrophoretic deposition. They added a spun-cast layer of polymer to the electrodes that serves as a pattern that organizes the nanoparticles as they are deposited. Then, after the deposition process is completed, they dissolve (sacrifice) the polymer layer to free the nanoparticle film.

According to the researchers, films made in this fashion stick together because the electrical field slams the nanoparticles into the film with sufficient force to pack the particles together tightly enough to allow naturally attractive inter-particle forces to bind the particles together.

So far the Dickerson group has used the technique to make films out of two different types of nanoparticles - iron oxide and cadmium selenide - and they believe the technique can be used with a wide variety of other nanoparticles.

"The technique is liberating because you can make these films from the materials you want and use them where you want," Dickerson says.

The co-authors on the paper are graduate students Saad A. Hasan and Dustin W. Kavich. The research was funded by a grant from Vanderbilt University.

####

About Vanderbilt University
Vanderbilt University is a center for scholarly research, informed and creative teaching, and service to the community and society at large. Vanderbilt will uphold the highest standards and be a leader in the

* quest for new knowledge through scholarship,
* dissemination of knowledge through teaching and outreach,
* creative experimentation of ideas and concepts.

In pursuit of these goals, Vanderbilt values most highly

* intellectual freedom that supports open inquiry,
* equality, compassion, and excellence in all endeavors.

Contacts:
Media Contact
David F. Salisbury
(615) 322-NEWS

Copyright © Vanderbilt University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Multimedia Version of article

Related News Press

Physics

SUNY Poly NanoCollege Faculty Member Selected as American Physical Society Fellow: SUNY Poly Associate Professor of Nanoscience Dr. Vincent LaBella Recognized for Significant Technological Innovations that Enable Interactive Learning December 17th, 2014

Fraud-proof credit card possible because of quantum physics December 16th, 2014

Display technology/LEDs/SS Lighting/OLEDs

Unraveling the light of fireflies December 17th, 2014

TCL Launches World’s Most Advanced TV in the World’s Largest Market: New Quantum Dot TVs with Color IQ™ Optics Deliver OLED-Quality Color at a Fraction of the Price December 15th, 2014

Dartmouth researchers create 'green' process to reduce molecular switching waste December 15th, 2014

Thin films

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

New way to move atomically thin semiconductors for use in flexible devices November 13th, 2014

Graphene Frontiers Partners with Madico to Accelerate Material Production: Deal to ignite and fulfill demand for industrial scale graphene film that supports energy, consumer electronics, membranes/filtration, solar and other applications November 12th, 2014

New materials for more powerful solar cells: Major breakthrough in solar energy November 11th, 2014

Possible Futures

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Researchers discern the shapes of high-order Brownian motions November 17th, 2014

VDMA Electronics Production Equipment: Growth track for 2014 and 2015 confirmed: Business climate survey shows robust industry sector November 14th, 2014

Open Materials Development Will Be Key for HP's Success in 3D Printing: HP can make a big splash in 3D printing, but it needs to shore up technology claims and avoid the temptation of the razor/razor blade business model in order to flourish November 11th, 2014

Chip Technology

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

Pb islands in a sea of graphene magnetise the material of the future December 16th, 2014

Stanford team combines logic, memory to build a 'high-rise' chip: Today circuit cards are laid out like single-story towns; Futuristic architecture builds layers of logic and memory into skyscraper chips that would be smaller, faster, cheaper -- and taller December 15th, 2014

Stacking two-dimensional materials may lower cost of semiconductor devices December 11th, 2014

Nanomedicine

Creation of 'Rocker' protein opens way for new smart molecules in medicine, other fields December 18th, 2014

Iranian Researchers Produce Electrical Pieces Usable in Human Body December 18th, 2014

Zenosense, Inc. - Hospital Collaboration - 400 Person Lung Cancer Detection Trial December 17th, 2014

Unraveling the light of fireflies December 17th, 2014

Nanoelectronics

Stacking two-dimensional materials may lower cost of semiconductor devices December 11th, 2014

Defects are perfect in laser-induced graphene: Rice University lab discovers simple way to make material for energy storage, electronics December 10th, 2014

Nanoscale resistors for quantum devices: The electrical characteristics of new thin-film chromium oxide resistors that can be tuned by controlling the oxygen content detailed in the 'Journal of Applied Physics' December 9th, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Discoveries

Creation of 'Rocker' protein opens way for new smart molecules in medicine, other fields December 18th, 2014

How does enzymatic pretreatment affect the nanostructure and reaction space of lignocellulosic biomass? December 18th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Iranian Researchers Produce Electrical Pieces Usable in Human Body December 18th, 2014

Announcements

Aculon Hires New Business Development Director December 19th, 2014

How does enzymatic pretreatment affect the nanostructure and reaction space of lignocellulosic biomass? December 18th, 2014

Silicon Valley-Based Foresight Valuation Launches STR-IP™, a New Initiative for Startups to Discover the Value of Their Intellectual Property December 18th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Nanobiotechnology

Scientists trace nanoparticles from plants to caterpillars: Rice University study examines how nanoparticles behave in food chain December 16th, 2014

FEI and Oregon Health & Science University Install a Complete Correlative Microscopy Workflow in Newly Built Collaborative Science Facility December 16th, 2014

UCLA engineers first to detect and measure individual DNA molecules using smartphone microscope December 15th, 2014

Biomimetic dew harvesters: Understanding how a desert beetle harvests water from dew could improve drinking water collection in dew condensers December 8th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE