Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Power to Danish-Chinese nano-operation

Abstract:
The Danish National Research Foundation has awarded 15 million kroner to a new Danish-Chinese research centre for molecular nano-electronics.

Power to Danish-Chinese nano-operation

Copenhagen & China | Posted on June 2nd, 2009

Since 2006 Danish researchers from the Nano Science Center and Niels Bohr Institute of University of Copenhagen and Chinese researchers from the Chinese Academy of Sciences in Beijing have been working together to develop electronic components of ‘plastic', which in the long term can be used in the electronic, energy and communications industries. The work has now been supported by the Danish National Research Foundation, with research centres being established in both capitals.

Ideal framework

The research field of molecular electronics is experiencing rapid development, and the collaboration between Danish and Chinese top researchers has exciting perspectives.

"The new centre is an ideal framework to exchange researchers and equally importantly, research students, creating the best possible foundation for a fruitful research partnership," says Professor Thomas Bjørnholm, leader of Nano-Science Center at University of Copenhagen. "Now we have the opportunity to work together with some of the world's best scientists in the area of molecular nano-electronics. We have different research related expertise in Denmark and China, and by working together we will be able to compliment each other."

Molecules and computers of the future

Researchers at the new Center for Molecular Nano-electronics have high expectations for the development opportunities in their subject. They expect, for example, that in the future they will be able to develop chemically manufactured computer electronics in nano size, enabling them to create a whole new type of computer. In the long term, the researchers aim to be able to create molecules that can change heat to electric current, for example from wasted heat from cars or factories.

In addition to the research-related aspects there will be an emphasis placed on developing a common study program, with student and young researcher exchanges. The ambition is to ensure a constant exchange of Danish and Chinese students and researchers.

Read more about the Center for Molecular Nano-electronics on the website of the Department of Chemistry's Nano-Science Center.

####

About University of Copenhagen
Nano-Science Center is a cross faculty initiative between the Faculty of Natural Sciences and the Faculty of Health - two faculties that total 10.000 students and around 2850 full-time employees.

In September 2001 the Center was inaugurated as a joint venture between the Niels Bohr Institute and the Department of Chemistry at the University of Copenhagen.

The Center has continuously developed its area of research, and today we are working closely together with the Institute of Molecular Biology and the Department of Pharmacology at the Faculty of Health.

The Center was the first in Denmark to introduce a full Bachelor- and Master's Education in Nanoscience. Today the center has more than 200 students of Nanoscience who are primarily educated to obtain jobs in private companies. It is the young researchers who are to bring our knowledge out of the laboratories and into private companies.

For more information, please click here

Contacts:
Center Leader, Professor Thomas Bjørnholm, Nano-Science Center, Department of Chemistry, University of Copenhagen, 35 32 18 35
Head of Administration Rikke Bøyesen, Nano-Science Center, Department of Chemistry, University of Copenhagen, 28 75 04 13

Copyright © University of Copenhagen

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science January 16th, 2018

The nanoscopic structure that locks up our genes January 16th, 2018

New exotic phenomena seen in photonic crystals: Researchers observe, for the first time, topological effects unique to an “open” system January 12th, 2018

Nanotube fibers in a jiffy: Rice University lab makes short nanotube samples by hand to dramatically cut production time January 11th, 2018

Chemistry

'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science January 16th, 2018

Possible Futures

'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science January 16th, 2018

The nanoscopic structure that locks up our genes January 16th, 2018

New exotic phenomena seen in photonic crystals: Researchers observe, for the first time, topological effects unique to an “open” system January 12th, 2018

'Decorated' stem cells could offer targeted heart repair January 11th, 2018

Academic/Education

Luleå University of Technology is using the Deben CT5000TEC stage to perform x-ray microtomography experiments with the ZEISS Xradia 510 Versa to understand deformation and strain inside inhomogeneous materials November 7th, 2017

Park Systems Announces the Grand Opening of the Park NanoScience Center at SUNY Polytechnic Institute November 3rd, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Nanoelectronics

Viewing atomic structures of dopant atoms in 3-D relating to electrical activity in a semiconductor December 28th, 2017

Electronically-smooth '3-D graphene': A bright future for trisodium bismuthide: Electronically-smooth nature of trisodium bismuthide makes it a viable alternative to graphene/h-BN December 22nd, 2017

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

GLOBALFOUNDRIES, Fudan Team to Deliver Next Generation Dual Interface Smart Card November 14th, 2017

Announcements

'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science January 16th, 2018

The nanoscopic structure that locks up our genes January 16th, 2018

New exotic phenomena seen in photonic crystals: Researchers observe, for the first time, topological effects unique to an “open” system January 12th, 2018

'Decorated' stem cells could offer targeted heart repair January 11th, 2018

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

The nanoscopic structure that locks up our genes January 16th, 2018

Nanotube fibers in a jiffy: Rice University lab makes short nanotube samples by hand to dramatically cut production time January 11th, 2018

Teachers in Space, Inc. wins Dream Project contest January 9th, 2018

Rice University lab modifies nanoscale virus to deliver peptide drugs to cells, tissues January 8th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project