Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Revolutionising the diagnosis of serious disease

Abstract:
Revolutionary ultrasonic nanotechnology that could allow scientists to see inside a patient's individual cells to help diagnose serious illnesses is being developed by researchers at The University of Nottingham.

Revolutionising the diagnosis of serious disease

Nottingham, UK | Posted on June 2nd, 2009

The new technique would utilise ultrasound technology — more commonly used to look at whole bodies such as fetal scanners — to look inside cells. The components of the new technology would be many thousand times smaller than current systems.

The technology would be tiny enough to allow scientists to see inside and image individual cells in the human body, which would further our understanding of the structure and function of cells and could help to detect abnormalities to diagnose serious illnesses such as some cancers.

The work by the Ultrasonics Group in the Division of Electrical Systems and Optics has been deemed so potentially innovative it has recently been awarded a £850,000 five-year Platform Grant by the Engineering and Physical Sciences Research Council (EPSRC).

Ultrasound refers to sound waves that are at a frequency too high to be detected by the human ear, typically 20 kHz and above. Medical ultrasound uses an electrical transducer the size of a matchbox to produce sound waves at much higher frequencies, typically around 100-1000 times higher to probe bodies.

The Nottingham researchers are aiming to produce a miniaturised version of this technology, with transducers so tiny that you could fit 500 across the width of one human hair which would produce sound waves at frequencies a thousand times higher again, in the GHz range.

Dr Matt Clark of the Ultrasonics Group, said: "By examining the mechanical properties inside a cell there is a huge amount that we can learn about its structure and the way it functions. But it's very much a leap into the unknown as this has never been achieved before.

"One of the reasons for this is that it presents an enormous technical challenge. To produce nano-ultrasonics you have to produce a nano-transducers, which essentially means taking a device that is currently the size of a matchbox and scaling it down to the nanoscale. How do you attach a wire to something so small?

"Our answer to some of these challenges is to create a device that works optically — using pulses of laser light to produce ultrasound rather than an electrical current. This allows us to talk to these tiny devices."

The new technology may also allow scientists to see objects even smaller than optical microscopes and be so sensitive they may be able to measure single molecules.

In addition to medical applications, the new technology would have important uses as a testing facility for industry to assess the integrity and quality of materials and to detect tiny defects which could have an impact on performance or safety.

Ultrasonics is currently used in applications such as testing landing gear components in the aero industry for cracks and damage which may not be immediately visible or may develop with use.

The group is also looking at developing new inspection techniques for inspecting engineering metamaterials — advanced composites that are currently impossible to inspect with ultrasound. These materials offer huge performance advantages allowing radical new engineering but can't be widely used because of the difficulty of inspection.

Dr Clark added: "We are also applying our technology to nanoengineering because we have to match the enormous growth in nanotechnology with techniques to inspect the nanoworld. As products and their components become ever tinier, the testing facilities for those also need to be scaled down accordingly.

In NEMS (nanoelectromechanical) and MEMS (microelectromechanical) based machines there is an increasing demand for testing facilities which offer the same capabilities as those for real-world sized devices."

####

About University of Nottingham
The University of Nottingham is ranked in the UK's Top 10 and the World's Top 100 universities by the Shanghai Jiao Tong (SJTU) and Times Higher (THE) World University Rankings.

More than 90 per cent of research at The University of Nottingham is of international quality, according to RAE 2008, with almost 60 per cent of all research defined as ‘world-leading’ or ‘internationally excellent’. Research Fortnight analysis of RAE 2008 ranks the University 7th in the UK by research power. In 27 subject areas, the University features in the UK Top Ten, with 14 of those in the Top Five.

The University provides innovative and top quality teaching, undertakes world-changing research, and attracts talented staff and students from 150 nations. Described by The Times as Britain's “only truly global university”, it has invested continuously in award-winning campuses in the United Kingdom, China and Malaysia. Twice since 2003 its research and teaching academics have won Nobel Prizes. The University has won the Queen's Award for Enterprise in both 2006 (International Trade) and 2007 (Innovation — School of Pharmacy), and was named ‘Entrepreneurial University of the Year’ at the Times Higher Education Awards 2008.

Nottingham was designated as a Science City in 2005 in recognition of its rich scientific heritage, industrial base and role as a leading research centre. Nottingham has since embarked on a wide range of business, property, knowledge transfer and educational initiatives (www.science-city.co.uk) in order to build on its growing reputation as an international centre of scientific excellence. The University of Nottingham is a partner in Nottingham: the Science City.

For more information, please click here

Contacts:
Dr Matt Clark
+44 (0)115 951 5536


Lindsay Brooke
Media Relations Manager

+44 (0)115 951 5751
Location: King's Meadow Campus

Copyright © University of Nottingham

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Smaller, faster, cheaper: A new type of modulator for the future of data transmission July 27th, 2015

Researchers predict material with record-setting melting point July 27th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Industrial Nanotech, Inc. Provides Update on PCAOB Audited Financials July 27th, 2015

NEMS

Investigation of Mechanical Behavior of Heterogeneous Nanostructures in Iran July 13th, 2015

Weighing -- and imaging -- molecules one at a time April 28th, 2015

Scientists join forces to reveal the mass and shape of single molecules April 27th, 2015

Surface matters: Huge reduction of heat conduction observed in flat silicon channels April 23rd, 2015

Possible Futures

Smaller, faster, cheaper: A new type of modulator for the future of data transmission July 27th, 2015

Researchers predict material with record-setting melting point July 27th, 2015

Global Corrosion Resistant Nano Coatings Market To 2015: Acute Market Reports July 27th, 2015

Global Zinc oxide nanopowders Industry 2015: Acute Market Reports July 25th, 2015

MEMS

Iranian Scientists Create Best Conditions for Synthesis of Gold Nanolayers July 23rd, 2015

Robust new process forms 3-D shapes from flat sheets of graphene June 23rd, 2015

Slip sliding away: Graphene and diamonds prove a slippery combination June 10th, 2015

MEMS Industry Group Hosts Its First MEMS/Sensors Conference Session at Transducers 2015: MIG Speakers Will Explore Technology Transfer, Emerging MEMS/Sensors, Manufacturing Infrastructure and Process Technology, June 23 in Anchorage June 3rd, 2015

Nanomedicine

Stretching the limits on conducting wires July 25th, 2015

UT Dallas nanotechnology research leads to super-elastic conducting fibers July 24th, 2015

Nanopaper as an optical sensing platform July 23rd, 2015

Albany College of Pharmacy and Health Sciences to Host One Week Symposium on Nanomedicine July 23rd, 2015

Announcements

Researchers predict material with record-setting melting point July 27th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Industrial Nanotech, Inc. Provides Update on PCAOB Audited Financials July 27th, 2015

Global Corrosion Resistant Nano Coatings Market To 2015: Acute Market Reports July 27th, 2015

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

UT Dallas nanotechnology research leads to super-elastic conducting fibers July 24th, 2015

Leti and Diabeloop Project Aims at Developing Artificial Pancreas for Diabetes Treatment July 22nd, 2015

Rice University finding could lead to cheap, efficient metal-based solar cells: Plasmonics study suggests how to maximize production of 'hot electrons' July 22nd, 2015

Smarter window materials can control light and energy July 22nd, 2015

Nanobiotechnology

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

Programming adult stem cells to treat muscular dystrophy and more by mimicking nature July 22nd, 2015

Biophotonics - Global Strategic Business Report 2015 July 21st, 2015

Rare form: Novel structures built from DNA emerge July 20th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project