Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > NanoInk Announces a New Extended Variable Temperature Control Module to Enhance DPN

Abstract:
Recent advances in producing a variety of new nanoscale products using NanoInk's patented Dip Pen Nanolithography(R) (DPN(R)) have been achieved with a new thermoelectric variable temperature stage module.

NanoInk Announces a New Extended Variable Temperature Control Module to Enhance DPN

Skokie, IL | Posted on May 28th, 2009

Vice President of NanoInk's NanoFabrication System Division, Tom Levesque stated "We have seen that the versatility of the materials which can be controllably deposited with DPN will grow with this new range of temperatures. Previous work centered around materials deposited close to ambient conditions, but this new approach enables the deposition of a wide variety of new molecules that were deemed challenging and impossible to deposit under ambient conditions. This gives us more flexibility and expands our choice of chemistries. This new stage extends the range from as low as 4 to as high as 80 degrees C."

Recent work presented at the NSTI meeting in Houston, Texas, showed how extended temperatures enabled the creation of modified substrates for stem cell culture. Dr. Nabil A. Amro, Senior Scientist at NanoInk, explained: "Our ability to fabricate features of alkanethiols under 100nm in size and extending over areas of square centimeters could not have been achieved without extended temperature control. These substrates are proving truly remarkable at controlling and selecting specific stem cell paths of differentiation."

The extended temperature DPN module will be available for NanoInk's DPN 5000 and NSCRIPTOR(R) systems in July. Contact NanoInk for more information at


NanoInk, the NanoInk logo, Dip Pen Nanolithography, DPN and NSCRIPTOR are trademarks or registered trademarks of NanoInk, Inc.

####

About NanoInk
NanoInk, Inc. is an emerging growth technology company specializing in nanometer-scale manufacturing and applications development for the life science and semiconductor industries. Using Dip Pen Nanolithography(R) (DPN(R)), a patented and proprietary nanofabrication technology, scientists are enabled to rapidly and easily create nanoscale structures from a wide variety of materials. This low cost, easy to use and scalable technique brings sophisticated nanofabrication to the laboratory desktop.

Located in the new Illinois Science + Technology Park, north of Chicago, NanoInk currently has over 140 patents and applications filed worldwide and has licensing agreements with Northwestern University, Stanford University, University of Strathclyde, University of Liverpool, California Institute of Technology and the University of Illinois at Urbana-Champaign. For more information on products and services offered by NanoInk, Inc., see www.nanoink.net.

For more information, please click here

Contacts:
For further information:

Please contact NanoInk direct or their PR agency, NetDyaLog Limited:

NanoInk, Inc.
8025 Lamon Avenue
Skokie
Illinois 60077
United States of America
T +1 847 745 3619
F +1 847 679 8767
www.nanoink.net


NetDyaLog Limited
39 de Bohun Court
Saffron Walden
Essex CB10 2BA
United Kingdom
T +44(0)1799 521881
F +44(0)1799 521881
www.netdyalog.com


NanoInk contact:
Sarah Kosar Raup, +1 847 745 3619

Media contact:
Jezz Leckenby, +44(0)1799 521881

Copyright © NanoInk

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanoparticles Increase Durability of Concrete Decorations in Cold Areas January 26th, 2015

Iranian Researchers Boost Solar Cells Efficiency Using Anti-Aggregates January 26th, 2015

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

Chemistry

Anti-microbial coatings with a long-term effect for surfaces presentation at nano tech 2015 in Japan January 21st, 2015

Hydrogels deliver on blood-vessel growth: Rice researchers introduce improved injectable scaffold to promote healing January 20th, 2015

Graphene enables all-electrical control of energy flow from light emitters: First signatures of graphene plasmons at telecommunications wavelength revealed January 20th, 2015

Nanotechnology Used to Produce Ceramic Membrane with High Thermal Stability January 19th, 2015

Chip Technology

Electronic circuits with reconfigurable pathways closer to reality January 26th, 2015

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

New method to generate arbitrary optical pulses January 21st, 2015

New signal amplification process set to transform communications, imaging, computing: UC San Diego researchers discover a mechanism to amplify signals in optoelectronic systems that is far more efficient than standard processes January 21st, 2015

Nanomedicine

Engineering self-assembling amyloid fibers January 26th, 2015

Promising use of nanodiamonds in delivering cancer drug to kill cancer stem cells: NUS study shows that delivery of Epirubicin by nanodiamonds resulted in a normally lethal dosage of Epirubicin becoming a safe and effective dosage for treatment of liver cancer January 26th, 2015

Teijin to Participate in Nano Tech 2015 January 22nd, 2015

2nd International Conference on Infectious Diseases & Nanomedicine (December 15-18, 2015, Kathmandu, NEPAL) January 22nd, 2015

Announcements

Nanoparticles Increase Durability of Concrete Decorations in Cold Areas January 26th, 2015

Iranian Researchers Boost Solar Cells Efficiency Using Anti-Aggregates January 26th, 2015

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

Tools

Visualizing interacting electrons in a molecule: Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule January 26th, 2015

Graphene brings quantum effects to electronic circuits January 22nd, 2015

EnvisioNano: An image contest hosted by the National Nanotechnology Initiative (NNI) January 22nd, 2015

New Molecular Beam Epitaxy deposition equipment at the ICN2 January 22nd, 2015

Nanobiotechnology

Nanoshuttle wear and tear: It's the mileage, not the age January 26th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

DNA 'glue' could someday be used to build tissues, organs January 14th, 2015

Photonic crystal nanolaser biosensor simplifies DNA detection: New device offers a simpler and potentially less expensive way to detect DNA and other biomolecules through changes in surface charge density or solution pH January 13th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE