Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > NanoInk Announces a New Extended Variable Temperature Control Module to Enhance DPN

Abstract:
Recent advances in producing a variety of new nanoscale products using NanoInk's patented Dip Pen Nanolithography(R) (DPN(R)) have been achieved with a new thermoelectric variable temperature stage module.

NanoInk Announces a New Extended Variable Temperature Control Module to Enhance DPN

Skokie, IL | Posted on May 28th, 2009

Vice President of NanoInk's NanoFabrication System Division, Tom Levesque stated "We have seen that the versatility of the materials which can be controllably deposited with DPN will grow with this new range of temperatures. Previous work centered around materials deposited close to ambient conditions, but this new approach enables the deposition of a wide variety of new molecules that were deemed challenging and impossible to deposit under ambient conditions. This gives us more flexibility and expands our choice of chemistries. This new stage extends the range from as low as 4 to as high as 80 degrees C."

Recent work presented at the NSTI meeting in Houston, Texas, showed how extended temperatures enabled the creation of modified substrates for stem cell culture. Dr. Nabil A. Amro, Senior Scientist at NanoInk, explained: "Our ability to fabricate features of alkanethiols under 100nm in size and extending over areas of square centimeters could not have been achieved without extended temperature control. These substrates are proving truly remarkable at controlling and selecting specific stem cell paths of differentiation."

The extended temperature DPN module will be available for NanoInk's DPN 5000 and NSCRIPTOR(R) systems in July. Contact NanoInk for more information at


NanoInk, the NanoInk logo, Dip Pen Nanolithography, DPN and NSCRIPTOR are trademarks or registered trademarks of NanoInk, Inc.

####

About NanoInk
NanoInk, Inc. is an emerging growth technology company specializing in nanometer-scale manufacturing and applications development for the life science and semiconductor industries. Using Dip Pen Nanolithography(R) (DPN(R)), a patented and proprietary nanofabrication technology, scientists are enabled to rapidly and easily create nanoscale structures from a wide variety of materials. This low cost, easy to use and scalable technique brings sophisticated nanofabrication to the laboratory desktop.

Located in the new Illinois Science + Technology Park, north of Chicago, NanoInk currently has over 140 patents and applications filed worldwide and has licensing agreements with Northwestern University, Stanford University, University of Strathclyde, University of Liverpool, California Institute of Technology and the University of Illinois at Urbana-Champaign. For more information on products and services offered by NanoInk, Inc., see www.nanoink.net.

For more information, please click here

Contacts:
For further information:

Please contact NanoInk direct or their PR agency, NetDyaLog Limited:

NanoInk, Inc.
8025 Lamon Avenue
Skokie
Illinois 60077
United States of America
T +1 847 745 3619
F +1 847 679 8767
www.nanoink.net


NetDyaLog Limited
39 de Bohun Court
Saffron Walden
Essex CB10 2BA
United Kingdom
T +44(0)1799 521881
F +44(0)1799 521881
www.netdyalog.com


NanoInk contact:
Sarah Kosar Raup, +1 847 745 3619

Media contact:
Jezz Leckenby, +44(0)1799 521881

Copyright © NanoInk

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nano Ruffles in Brain Matter: Freiburg researchers decipher the role of nanostructures around brain cells in central nervous system function October 31st, 2014

Gold nanoparticle chains confine light to the nanoscale October 31st, 2014

'Nanomotor lithography' answers call for affordable, simpler device manufacturing October 31st, 2014

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

Chemistry

First Observation of Electronic Structure in Ag-Rh Alloy Nanoparticles Having Hydrogen Absorbing: Storage Property –Attempting to solve the mystery of why Ag-Rh alloy nanoparticles have a similar property to Pd– October 30th, 2014

A new cheap and efficient method to improve SERS, an ultra-sensitive chemical detection technique October 28th, 2014

Iranian, Malaysian Scientists Study Nanophotocatalysts for Water Purification October 23rd, 2014

Chip Technology

Sussex physicists find simple solution for quantum technology challenge October 28th, 2014

Watching the hidden life of materials: Ultrafast electron diffraction experiments open a new window on the microscopic world October 27th, 2014

Breakthrough in molecular electronics paves the way for DNA-based computer circuits in the future: DNA-based programmable circuits could be more sophisticated, cheaper and simpler to make October 27th, 2014

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Nanomedicine

Nano Ruffles in Brain Matter: Freiburg researchers decipher the role of nanostructures around brain cells in central nervous system function October 31st, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

'Electronic skin' could improve early breast cancer detection October 29th, 2014

Announcements

Nano Ruffles in Brain Matter: Freiburg researchers decipher the role of nanostructures around brain cells in central nervous system function October 31st, 2014

Gold nanoparticle chains confine light to the nanoscale October 31st, 2014

'Nanomotor lithography' answers call for affordable, simpler device manufacturing October 31st, 2014

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

Tools

Device invented at Johns Hopkins provides up-close look at cancer on the move: Microscopic view of metastasis could give insight about how to keep cancer in check October 31st, 2014

A new cheap and efficient method to improve SERS, an ultra-sensitive chemical detection technique October 28th, 2014

New Compact SIMS at 61st AVS | Visit us on Booth 311 October 28th, 2014

New nanodevice to improve cancer treatment monitoring October 27th, 2014

Nanobiotechnology

Tiny carbon nanotube pores make big impact October 29th, 2014

Molecular beacons shine light on how cells 'crawl' October 27th, 2014

Breakthrough in molecular electronics paves the way for DNA-based computer circuits in the future: DNA-based programmable circuits could be more sophisticated, cheaper and simpler to make October 27th, 2014

NYU Researchers Break Nano Barrier to Engineer the First Protein Microfiber October 23rd, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE