Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > News > Robert Kahn on nanotechnology research

May 16th, 2009

Robert Kahn on nanotechnology research

Abstract:
CEO of the Corporation for National Research Initiatives talks about potential effect of nanotechnology on the government IT market

The Corporation for National Research Initiatives has also been an important player in the area of Micro-Electro-Mechanical Systems and Nanotechnology with its MEMS Exchange. In an extended interview with Government Computer News chief editor Wyatt Kash, Internet pioneer and CNRI chairman, chief executive officer and president, Dr. Robert E. Kahn, talked about how CNRI got involved in the supporting MEMS research and that work might impact the government technology market.

Dr. Robert E. Kahn: I think this work almost surely will have an important impact on research and prototyping activities in the country and ultimately innovation more broadly. Most of what comes into the MEMS and Nanotechnology Exchange consists of proprietary designs that organizations and individuals wish to have fabricated into devices. This is an effort that DARPA funded because they wanted to help groups that might otherwise have difficulty getting designs fabricated to get them done. It's very hard for an organization to work with foundries to fabricate one device or even very small lots. But if you want, say, a million devices, they'll work with you. The overhead of training a new user to use a facility for generating very small lots isn't usually worth it.

Back in the late 1970s when I was at DARPA, I was very concerned that if we didn't get the university computer science community to learn how to deal with LSI (large scale integration) technology, and the ability to design integrated circuits, they would be marginalized going forward. In addition to being out of touch with the latest technology for building computational devices, industry would find a shortage of adequately trained personnel. Most importantly, we wouldn't benefit from the innovative ideas that might have resulted from the burgeoning computer science community.

Source:
gcn.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

'Find the Lady' in the quantum world: International team of researchers presents method for quantum-mechanical swapping of positions October 18th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

MEMS

First Capacitive Transducer with 13nm Gap July 27th, 2017

Bosch announces high-performance MEMS acceleration sensors for wearables June 27th, 2017

Smart multi-layered magnetic material acts as an electric switch: New study reveals characteristic of islands of magnetic metals between vacuum gaps, displaying tunnelling electric current March 1st, 2017

Engineers shrink microscope to dime-sized device February 17th, 2017

Announcements

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

'Find the Lady' in the quantum world: International team of researchers presents method for quantum-mechanical swapping of positions October 18th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project