Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Veeco Introduces “FastLine” Glass Coating Platform: For Production of CIGS Thin Film Solar Cells

Abstract:
Veeco Instruments Inc. (Nasdaq: VECO), announced the introduction of its FastLine™ platform of Glass Coating Systems, leveraging Veeco's proven PV-Series™ Thermal Deposition Sources. Veeco's new FastLine platform is designed for high throughput, low cost of ownership production of CIGS (copper, indium, gallium and selenium) solar cells.

Veeco Introduces “FastLine” Glass Coating Platform: For Production of CIGS Thin Film Solar Cells

Plainview, NY | Posted on April 27th, 2009

Piero Sferlazzo, Ph.D., Senior Vice President of Veeco's Solar Equipment business, commented, "Veeco is now the only equipment company offering integrated production-scale solutions for CIGS manufacturing on glass using thermal evaporation sources for the CIGS/absorber layer. Customers can now choose Veeco to provide comprehensive, fully integrated equipment to manufacture CIGS solar cells, whether they choose to use our FastLine systems for glass or our FastFlex™ systems for flexible substrates."

Thermal evaporation, as compared to other deposition methods, produces the highest efficiency thin film solar cells and has the lowest materials costs with high material utilization driving down the manufacturing cost per watt. Veeco's FastLine systems can handle up to thirty 1.1m x 1.4m glass panels/hour. The modular architecture of the system allows customers to scale their output according to their needs.

The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) has claimed a world record for CIGS thin-film solar cell conversion efficiency of 19.9 percent. The conversion efficiency for CIGS is now close to that of multi-crystalline silicon-based solar cells, according to NREL. This achievement was hailed as an important milestone because the efficiency of thin film solar cells is now achieving its goal of matching silicon in performance.

####

About Veeco Instruments Inc.
Veeco Instruments Inc. manufactures enabling solutions for customers in the HB-LED, solar, data storage, semiconductor, scientific research and industrial markets. We have leading technology positions in our three businesses: LED & Solar Process Equipment, Data Storage Process Equipment, and Metrology Instruments. Veeco’s manufacturing and engineering facilities are located in New York, New Jersey, California, Colorado, Arizona, Massachusetts and Minnesota. Global sales and service offices are located throughout the U.S., Europe, Japan and APAC.

To the extent that this news release discusses expectations or otherwise makes statements about the future, such statements are forward-looking and are subject to a number of risks and uncertainties that could cause actual results to differ materially from the statements made. These factors include the risks discussed in the Business Description and Management's Discussion and Analysis sections of Veeco's Annual Report on Form 10-K for the year ended December 31, 2008 and in our subsequent quarterly reports on Form 10-Q, current reports on Form 8-K and press releases. Veeco does not undertake any obligation to update any forward-looking statements to reflect future events or circumstances after the date of such statements.

For more information, please click here

Contacts:
Investor Contact:
Deb Wasser
SVP
Investor Relations
1-516-677-0200 x 1472

Trade Media Contact:
Fran Brennen
Senior Director of Marcom
1-516-677-0200 x1222

Copyright © Veeco Instruments Inc.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New quantum phenomena in graphene superlattices September 18th, 2017

Do titanium dioxide particles from orthopedic implants disrupt bone repair? September 16th, 2017

Hydrogen power moves a step closer: Physicists are developing methods of creating renewable fuel from water using quantum technology September 15th, 2017

Corrosion in real time: UCSB researchers get a nanoscale glimpse of crevice and pitting corrosion as it happens September 14th, 2017

Thin films

Rice University chemists make laser-induced graphene from wood July 31st, 2017

Graduate Students from Across the Country Attend Hands-on NanoCamp: Prominent scientists Warren Oliver, Ph.D., and George Pharr, Ph.D., presented a weeklong NanoCamp for hand-picked graduate students across the United States July 26th, 2017

Studying Argon Gas Trapped in Two-Dimensional Array of Tiny "Cages": Understanding how individual atoms enter and exit the nanoporous frameworks could help scientists design new materials for gas separation and nuclear waste remediation July 17th, 2017

Thinking thin brings new layering and thermal abilities to the semiconductor industry: In a breakthrough for the semiconductor industry, researchers demonstrate a new layer transfer technique called "controlled spalling" that creates many thin layers from a single gallium nitride July 11th, 2017

Announcements

New quantum phenomena in graphene superlattices September 18th, 2017

Do titanium dioxide particles from orthopedic implants disrupt bone repair? September 16th, 2017

Hydrogen power moves a step closer: Physicists are developing methods of creating renewable fuel from water using quantum technology September 15th, 2017

Corrosion in real time: UCSB researchers get a nanoscale glimpse of crevice and pitting corrosion as it happens September 14th, 2017

Tools

Graphene based terahertz absorbers: Printable graphene inks enable ultrafast lasers in the terahertz range September 13th, 2017

Chemical hot spots: Scanning tunneling microscopy measurements identify active sites on catalyst surfaces September 7th, 2017

Phenom-World selects Deben to supply a tensile stage as an accessory to their range of desktop SEMs August 29th, 2017

New results reveal high tunability of 2-D material: Berkeley Lab-led team also provides most precise band gap measurement yet for hotly studied monolayer moly sulfide August 26th, 2017

Energy

Insect eyes inspire new solar cell design from Stanford August 31st, 2017

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Solar/Photovoltaic

Hydrogen power moves a step closer: Physicists are developing methods of creating renewable fuel from water using quantum technology September 15th, 2017

Insect eyes inspire new solar cell design from Stanford August 31st, 2017

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Fewer defects from a 2-D approach August 15th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project