Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Veeco Introduces “FastLine” Glass Coating Platform: For Production of CIGS Thin Film Solar Cells

Abstract:
Veeco Instruments Inc. (Nasdaq: VECO), announced the introduction of its FastLine™ platform of Glass Coating Systems, leveraging Veeco's proven PV-Series™ Thermal Deposition Sources. Veeco's new FastLine platform is designed for high throughput, low cost of ownership production of CIGS (copper, indium, gallium and selenium) solar cells.

Veeco Introduces “FastLine” Glass Coating Platform: For Production of CIGS Thin Film Solar Cells

Plainview, NY | Posted on April 27th, 2009

Piero Sferlazzo, Ph.D., Senior Vice President of Veeco's Solar Equipment business, commented, "Veeco is now the only equipment company offering integrated production-scale solutions for CIGS manufacturing on glass using thermal evaporation sources for the CIGS/absorber layer. Customers can now choose Veeco to provide comprehensive, fully integrated equipment to manufacture CIGS solar cells, whether they choose to use our FastLine systems for glass or our FastFlex™ systems for flexible substrates."

Thermal evaporation, as compared to other deposition methods, produces the highest efficiency thin film solar cells and has the lowest materials costs with high material utilization driving down the manufacturing cost per watt. Veeco's FastLine systems can handle up to thirty 1.1m x 1.4m glass panels/hour. The modular architecture of the system allows customers to scale their output according to their needs.

The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) has claimed a world record for CIGS thin-film solar cell conversion efficiency of 19.9 percent. The conversion efficiency for CIGS is now close to that of multi-crystalline silicon-based solar cells, according to NREL. This achievement was hailed as an important milestone because the efficiency of thin film solar cells is now achieving its goal of matching silicon in performance.

####

About Veeco Instruments Inc.
Veeco Instruments Inc. manufactures enabling solutions for customers in the HB-LED, solar, data storage, semiconductor, scientific research and industrial markets. We have leading technology positions in our three businesses: LED & Solar Process Equipment, Data Storage Process Equipment, and Metrology Instruments. Veeco’s manufacturing and engineering facilities are located in New York, New Jersey, California, Colorado, Arizona, Massachusetts and Minnesota. Global sales and service offices are located throughout the U.S., Europe, Japan and APAC.

To the extent that this news release discusses expectations or otherwise makes statements about the future, such statements are forward-looking and are subject to a number of risks and uncertainties that could cause actual results to differ materially from the statements made. These factors include the risks discussed in the Business Description and Management's Discussion and Analysis sections of Veeco's Annual Report on Form 10-K for the year ended December 31, 2008 and in our subsequent quarterly reports on Form 10-Q, current reports on Form 8-K and press releases. Veeco does not undertake any obligation to update any forward-looking statements to reflect future events or circumstances after the date of such statements.

For more information, please click here

Contacts:
Investor Contact:
Deb Wasser
SVP
Investor Relations
1-516-677-0200 x 1472

Trade Media Contact:
Fran Brennen
Senior Director of Marcom
1-516-677-0200 x1222

Copyright © Veeco Instruments Inc.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Arrowhead Pharmaceuticals Announces Proposed Underwritten Offering of Common Stock January 17th, 2018

Thin films

Particle size matters for porous building blocks: Rice University scientists find porous nanoparticles get tougher under pressure, but not when assembled December 19th, 2017

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

Rice University chemists make laser-induced graphene from wood July 31st, 2017

Graduate Students from Across the Country Attend Hands-on NanoCamp: Prominent scientists Warren Oliver, Ph.D., and George Pharr, Ph.D., presented a weeklong NanoCamp for hand-picked graduate students across the United States July 26th, 2017

Announcements

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Arrowhead Pharmaceuticals Announces Proposed Underwritten Offering of Common Stock January 17th, 2018

Tools

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Nanowrinkles could save billions in shipping and aquaculture Surfaces inspired by carnivorous plants delay degradation by marine fouling January 17th, 2018

Ultra-thin optical fibers offer new way to 3-D print microstructures: Novel approach lays groundwork for using 3-D printing to repair tissue in the body January 17th, 2018

The nanoscopic structure that locks up our genes January 16th, 2018

Energy

Ultrathin black phosphorus for solar-driven hydrogen economy: Osaka University researchers use sunlight to make hydrogen with a new nanostructured catalyst based on nanosheets of black phosphorus and bismuth vanadate January 17th, 2018

New catalyst for hydrogen production is a step toward clean fuel: Carbon-based nanocomposite with embedded metal ions yields impressive performance as catalyst for electrolysis of water to generate hydrogen January 16th, 2018

Rice U.'s one-step catalyst turns nitrates into water and air: NSF-funded NEWT Center aims for catalytic converter for nitrate-polluted water January 5th, 2018

Tweaking quantum dots powers-up double-pane solar windows: Engineered quantum dots could bring down the cost of solar electricity January 2nd, 2018

Solar/Photovoltaic

Tweaking quantum dots powers-up double-pane solar windows: Engineered quantum dots could bring down the cost of solar electricity January 2nd, 2018

Record high photoconductivity for new metal-organic framework material December 15th, 2017

Inorganic-organic halide perovskites for new photovoltaic technology November 6th, 2017

New nanomaterial can extract hydrogen fuel from seawater: Hybrid material converts more sunlight and can weather seawater's harsh conditions October 4th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project