Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > National Renewable Energy Laboratory Installs iTi Solar Inkjet and Sprayer Systems: Systems to Be Used for Advanced Solar Cell Research

Abstract:
iTi Solar today announced that the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) has installed inkjet and spray workstations supplied by iTi Solar in NREL's advanced Atmospheric Processing Platform, which is located in the Process Development and Integration Laboratory at the National Center for Photovoltaics. NREL will use the iTi Solar workstations to develop low-cost atmospheric processing methods and materials for use in photovoltaic applications. iTi Solar is a division of iTi Corporation dedicated to advancing the economics of clean, renewable energy through the use of industrial inkjet technologies.

National Renewable Energy Laboratory Installs iTi Solar Inkjet and Sprayer Systems: Systems to Be Used for Advanced Solar Cell Research

Boulder, CO | Posted on April 22nd, 2009

For many applications, solar cells today are not cost-competitive with more traditional sources of energy. Reducing material costs and process inefficiencies through inkjet technology is an important component in NREL's research project to reduce costs. Inkjet is emerging as a versatile, precise printing method to advance manufacturing processes while lowering substrate, materials and capital costs.

iTi Solar's Materials Deposition Systems (MDS), which are being used as part of NREL's research project, enable digital deposition of a wide range of fluids utilizing inkjet printhead and sprayer technologies. Inkjet technologies offer manufacturing cost efficiencies for silicon-based, thin-film and next generation photovoltaic cells.

"Inkjet printing is an attractive, viable alternative to many existing deposition approaches and has the potential to produce high-quality solar cells at reduced cost," said Dr. Maikel van Hest, scientist, NREL. "After a global competition, we selected iTi Solar's inkjet and sprayer systems."

Much of today's research is focused on thin-film photovoltaic cells as thin-film technology uses lower cost substrates compared to silicon and is suitable for applying solar panels to many surfaces from roof shingles to cell phones. Compared with traditional processes of coating, sputtering and etching, inkjet is an additive, direct material deposition process. Drop placement is digitally controlled so that only what is required is precisely deposited. This offers considerable savings in applications utilizing high cost fluids by reducing waste and raw material volumes. Because inkjet deposition is non-contact, there is less damage to materials and therefore a wider range of highly efficient but fragile substrate materials can be utilized in manufacturing.

Inkjet processes have the potential to greatly simplify the fabrication of solar panels by reducing the number of manufacturing steps, making more efficient use of expensive materials, and eliminating much of the vacuum equipment that often requires a clean room environment.

"Addressing the global need for efficient, economic renewable energy requires technology breakthroughs that improve conversion efficiencies and enable low-cost manufacturing to drive mass scale production," said Dr. Ross Mills, chairman, founder and chief technology officer, iTi Corporation. "We believe inkjet technologies combined with flexible, thin-film substrates hold the greatest promise for significantly reducing solar cell manufacturing costs and accelerating the use of solar energy."

"Substantial inkjet knowledge and expertise is crucial to successfully incorporate inkjet processes into production lines," added Mills. "With extensive experience and patented inkjet technologies, iTi is leveraging its proven leadership in mastering the intricacies of inkjet to deliver reliable, cost-effective manufacturing solutions to the solar industry."

NREL's Atmospheric Processing Platform is a sophisticated, multi-functional process line with integrated vacuum processing, materials analysis, inkjet and spray stations housed within atmospherically controlled chambers. Its purpose is to facilitate NREL research into the materials and processes required to reduce the manufacturing costs of solar cell technology.

####

About iTi Solar
iTi Solar, a division of imaging Technology international (iTi) Corporation, has been established to advance the economics of clean, renewable energy through the use of industrial inkjet technologies. iTi Solar develops precision industrial inkjet systems for use in the manufacturing of efficient, low-cost solar cells. Inkjet technologies combined with flexible, thin film substrates have the potential to significantly reduce solar cell manufacturing costs, producing solar energy that cost less than today’s traditional energy sources such as hydro electric power, coal, oil and gas. iTi Solar’s vision is to develop new technologies for printheads and nanomaterials that will revolutionize the solar cell market. iTi Solar’s Inkjet Materials Deposition Systems are currently being used for solar research by a number of labs throughout the world, including the U.S. Department of Energy’s National Renewable Energy Laboratory (NREL), the University of New South Wales in Australia and Printed Electronics, Ltd in Cambridge, England.

For more information, please click here

Contacts:
IGNITE Consulting
Linda Dellett, 303-439-9398
Kathleen Sullivan, 303-439-9365

Copyright © Business Wire 2009

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Laboratories

Nanoscale view of energy storage January 16th, 2017

Chemistry on the edge: Experiments at Berkeley Lab confirm that structural defects at the periphery are key in catalyst function January 13th, 2017

Recreating conditions inside stars with compact lasers: Scientists offer a new path to creating the extreme conditions found in stars, using ultra-short laser pulses irradiating nanowires January 12th, 2017

NIST physicists 'squeeze' light to cool microscopic drum below quantum limit January 12th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's January 19th, 2017

Strength of hair inspires new materials for body armor January 18th, 2017

Announcements

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Energy

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Stability challenge in perovskite solar cell technology: New research reveals intrinsic instability issues of iodine-containing perovskite solar cells December 26th, 2016

New-Contracts/Sales/Customers

Cetim Facility Receives Bruker Contour CMM Dimensional Analysis System: New Optical Coordinate Measurement Technology Enables High-Precision 3D Scanning November 16th, 2016

Industrial Nanotech, Inc. Announces Plans to Spin Off New Product Line to Major Paint Compan November 9th, 2016

Leti Provides New Low-noise Image Technology to French SME PYXALIS; Will Be Demonstrated at Vision 2016 in Stuttgart November 3rd, 2016

DryWired's Liquid Nanotint to be the first nano-insulation in a Federal building: 250,000 federal buildings, most with uninsulated glass October 12th, 2016

Printing/Lithography/Inkjet/Inks/Bio-printing

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Nanowire 'inks' enable paper-based printable electronics: Highly conductive films make functional circuits without adding high heat January 4th, 2017

Nanocubes simplify printing and imaging in color and infrared: New technology allows multispectral reactions on a single chip December 15th, 2016

Bumpy surfaces, graphene beat the heat in devices: Rice University theory shows way to enhance heat sinks in future microelectronics November 29th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project