Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > National Renewable Energy Laboratory Installs iTi Solar Inkjet and Sprayer Systems: Systems to Be Used for Advanced Solar Cell Research

Abstract:
iTi Solar today announced that the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) has installed inkjet and spray workstations supplied by iTi Solar in NREL's advanced Atmospheric Processing Platform, which is located in the Process Development and Integration Laboratory at the National Center for Photovoltaics. NREL will use the iTi Solar workstations to develop low-cost atmospheric processing methods and materials for use in photovoltaic applications. iTi Solar is a division of iTi Corporation dedicated to advancing the economics of clean, renewable energy through the use of industrial inkjet technologies.

National Renewable Energy Laboratory Installs iTi Solar Inkjet and Sprayer Systems: Systems to Be Used for Advanced Solar Cell Research

Boulder, CO | Posted on April 22nd, 2009

For many applications, solar cells today are not cost-competitive with more traditional sources of energy. Reducing material costs and process inefficiencies through inkjet technology is an important component in NREL's research project to reduce costs. Inkjet is emerging as a versatile, precise printing method to advance manufacturing processes while lowering substrate, materials and capital costs.

iTi Solar's Materials Deposition Systems (MDS), which are being used as part of NREL's research project, enable digital deposition of a wide range of fluids utilizing inkjet printhead and sprayer technologies. Inkjet technologies offer manufacturing cost efficiencies for silicon-based, thin-film and next generation photovoltaic cells.

"Inkjet printing is an attractive, viable alternative to many existing deposition approaches and has the potential to produce high-quality solar cells at reduced cost," said Dr. Maikel van Hest, scientist, NREL. "After a global competition, we selected iTi Solar's inkjet and sprayer systems."

Much of today's research is focused on thin-film photovoltaic cells as thin-film technology uses lower cost substrates compared to silicon and is suitable for applying solar panels to many surfaces from roof shingles to cell phones. Compared with traditional processes of coating, sputtering and etching, inkjet is an additive, direct material deposition process. Drop placement is digitally controlled so that only what is required is precisely deposited. This offers considerable savings in applications utilizing high cost fluids by reducing waste and raw material volumes. Because inkjet deposition is non-contact, there is less damage to materials and therefore a wider range of highly efficient but fragile substrate materials can be utilized in manufacturing.

Inkjet processes have the potential to greatly simplify the fabrication of solar panels by reducing the number of manufacturing steps, making more efficient use of expensive materials, and eliminating much of the vacuum equipment that often requires a clean room environment.

"Addressing the global need for efficient, economic renewable energy requires technology breakthroughs that improve conversion efficiencies and enable low-cost manufacturing to drive mass scale production," said Dr. Ross Mills, chairman, founder and chief technology officer, iTi Corporation. "We believe inkjet technologies combined with flexible, thin-film substrates hold the greatest promise for significantly reducing solar cell manufacturing costs and accelerating the use of solar energy."

"Substantial inkjet knowledge and expertise is crucial to successfully incorporate inkjet processes into production lines," added Mills. "With extensive experience and patented inkjet technologies, iTi is leveraging its proven leadership in mastering the intricacies of inkjet to deliver reliable, cost-effective manufacturing solutions to the solar industry."

NREL's Atmospheric Processing Platform is a sophisticated, multi-functional process line with integrated vacuum processing, materials analysis, inkjet and spray stations housed within atmospherically controlled chambers. Its purpose is to facilitate NREL research into the materials and processes required to reduce the manufacturing costs of solar cell technology.

####

About iTi Solar
iTi Solar, a division of imaging Technology international (iTi) Corporation, has been established to advance the economics of clean, renewable energy through the use of industrial inkjet technologies. iTi Solar develops precision industrial inkjet systems for use in the manufacturing of efficient, low-cost solar cells. Inkjet technologies combined with flexible, thin film substrates have the potential to significantly reduce solar cell manufacturing costs, producing solar energy that cost less than today’s traditional energy sources such as hydro electric power, coal, oil and gas. iTi Solar’s vision is to develop new technologies for printheads and nanomaterials that will revolutionize the solar cell market. iTi Solar’s Inkjet Materials Deposition Systems are currently being used for solar research by a number of labs throughout the world, including the U.S. Department of Energy’s National Renewable Energy Laboratory (NREL), the University of New South Wales in Australia and Printed Electronics, Ltd in Cambridge, England.

For more information, please click here

Contacts:
IGNITE Consulting
Linda Dellett, 303-439-9398
Kathleen Sullivan, 303-439-9365

Copyright © Business Wire 2009

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Carbon Sciences Developing Breakthrough Technology to Mass-Produce Graphene -- the New Miracle Material: Company Enters Into an Agreement With the University of California, Santa Barbara (UCSB) to Fund the Further Development of a New Graphene Process September 16th, 2014

Nanoribbon film keeps glass ice-free: Rice University lab refines deicing film that allows radio frequencies to pass September 16th, 2014

Effective Nanotechnology Innovations to Receive Mustafa Prize September 16th, 2014

‘Small’ transformation yields big changes September 16th, 2014

Treatment of Cell Infection by Nanotechnology September 15th, 2014

Laboratories

Elusive Quantum Transformations Found Near Absolute Zero: Brookhaven Lab and Stony Brook University researchers measured the quantum fluctuations behind a novel magnetic material's ultra-cold ferromagnetic phase transition September 15th, 2014

'Squid skin' metamaterials project yields vivid color display: Rice lab creates RGB color display technology with aluminum nanorods September 15th, 2014

Berkeley Lab Licenses Boron Nitride Nanotube Technology: New material has unique mechanical and electronic properties September 13th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Nanoribbon film keeps glass ice-free: Rice University lab refines deicing film that allows radio frequencies to pass September 16th, 2014

‘Small’ transformation yields big changes September 16th, 2014

'Squid skin' metamaterials project yields vivid color display: Rice lab creates RGB color display technology with aluminum nanorods September 15th, 2014

Fonon at Cutting-Edge of 3D Military Printing: Live-Combat Scenarios Could See a Decisive Advantage with 3D Printing September 15th, 2014

Announcements

Carbon Sciences Developing Breakthrough Technology to Mass-Produce Graphene -- the New Miracle Material: Company Enters Into an Agreement With the University of California, Santa Barbara (UCSB) to Fund the Further Development of a New Graphene Process September 16th, 2014

Nanoribbon film keeps glass ice-free: Rice University lab refines deicing film that allows radio frequencies to pass September 16th, 2014

Effective Nanotechnology Innovations to Receive Mustafa Prize September 16th, 2014

‘Small’ transformation yields big changes September 16th, 2014

Energy

Rice rolls 'neat' nanotube fibers: Rice University researchers' acid-free approach leads to strong conductive carbon threads September 15th, 2014

Simple, Cost-Effective Method Proposed for Synthesizing Zinc Oxide Nanopigments September 15th, 2014

UT Arlington research uses nanotechnology to help cool electrons with no external sources September 11th, 2014

Excitonic Dark States Shed Light on TMDC Atomic Layers: Berkeley Lab Discovery Holds Promise for Nanoelectronic and Photonic Applications September 11th, 2014

New-Contracts/Sales/Customers

Fullerex: Talga Resources Joins INSCX™ Exchange September 4th, 2014

Global Energy Systems Signs Master Sales Agreement with China Aviation Supplies Group September 4th, 2014

East China University of Science and Technology Purchases Nanonex Advanced Nanoimprint Tool NX-B200 July 30th, 2014

University of Manchester selects Anasys AFM-IR for coatings and corrosion research July 30th, 2014

Printing/Lithography/Inkjet/Inks

RMIT delivers $30m boost to micro and nano-tech August 26th, 2014

SouthWest NanoTechnologies Appoints Matteson-Ridolfi for U.S. Distribution of its SMW™ Specialty Multiwall Carbon Nanotubes August 13th, 2014

An Inkjet-Printed Field-Effect Transistor for Label-Free Biosensing August 11th, 2014

SEMATECH and Newly Merged SUNY CNSE/SUNYIT Launch New Patterning Center to Further Advance Materials Development: Center to Provide Access to Critical Tools that Support Semiconductor Technology Node Development August 7th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE