Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > National Renewable Energy Laboratory Installs iTi Solar Inkjet and Sprayer Systems: Systems to Be Used for Advanced Solar Cell Research

Abstract:
iTi Solar today announced that the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) has installed inkjet and spray workstations supplied by iTi Solar in NREL's advanced Atmospheric Processing Platform, which is located in the Process Development and Integration Laboratory at the National Center for Photovoltaics. NREL will use the iTi Solar workstations to develop low-cost atmospheric processing methods and materials for use in photovoltaic applications. iTi Solar is a division of iTi Corporation dedicated to advancing the economics of clean, renewable energy through the use of industrial inkjet technologies.

National Renewable Energy Laboratory Installs iTi Solar Inkjet and Sprayer Systems: Systems to Be Used for Advanced Solar Cell Research

Boulder, CO | Posted on April 22nd, 2009

For many applications, solar cells today are not cost-competitive with more traditional sources of energy. Reducing material costs and process inefficiencies through inkjet technology is an important component in NREL's research project to reduce costs. Inkjet is emerging as a versatile, precise printing method to advance manufacturing processes while lowering substrate, materials and capital costs.

iTi Solar's Materials Deposition Systems (MDS), which are being used as part of NREL's research project, enable digital deposition of a wide range of fluids utilizing inkjet printhead and sprayer technologies. Inkjet technologies offer manufacturing cost efficiencies for silicon-based, thin-film and next generation photovoltaic cells.

"Inkjet printing is an attractive, viable alternative to many existing deposition approaches and has the potential to produce high-quality solar cells at reduced cost," said Dr. Maikel van Hest, scientist, NREL. "After a global competition, we selected iTi Solar's inkjet and sprayer systems."

Much of today's research is focused on thin-film photovoltaic cells as thin-film technology uses lower cost substrates compared to silicon and is suitable for applying solar panels to many surfaces from roof shingles to cell phones. Compared with traditional processes of coating, sputtering and etching, inkjet is an additive, direct material deposition process. Drop placement is digitally controlled so that only what is required is precisely deposited. This offers considerable savings in applications utilizing high cost fluids by reducing waste and raw material volumes. Because inkjet deposition is non-contact, there is less damage to materials and therefore a wider range of highly efficient but fragile substrate materials can be utilized in manufacturing.

Inkjet processes have the potential to greatly simplify the fabrication of solar panels by reducing the number of manufacturing steps, making more efficient use of expensive materials, and eliminating much of the vacuum equipment that often requires a clean room environment.

"Addressing the global need for efficient, economic renewable energy requires technology breakthroughs that improve conversion efficiencies and enable low-cost manufacturing to drive mass scale production," said Dr. Ross Mills, chairman, founder and chief technology officer, iTi Corporation. "We believe inkjet technologies combined with flexible, thin-film substrates hold the greatest promise for significantly reducing solar cell manufacturing costs and accelerating the use of solar energy."

"Substantial inkjet knowledge and expertise is crucial to successfully incorporate inkjet processes into production lines," added Mills. "With extensive experience and patented inkjet technologies, iTi is leveraging its proven leadership in mastering the intricacies of inkjet to deliver reliable, cost-effective manufacturing solutions to the solar industry."

NREL's Atmospheric Processing Platform is a sophisticated, multi-functional process line with integrated vacuum processing, materials analysis, inkjet and spray stations housed within atmospherically controlled chambers. Its purpose is to facilitate NREL research into the materials and processes required to reduce the manufacturing costs of solar cell technology.

####

About iTi Solar
iTi Solar, a division of imaging Technology international (iTi) Corporation, has been established to advance the economics of clean, renewable energy through the use of industrial inkjet technologies. iTi Solar develops precision industrial inkjet systems for use in the manufacturing of efficient, low-cost solar cells. Inkjet technologies combined with flexible, thin film substrates have the potential to significantly reduce solar cell manufacturing costs, producing solar energy that cost less than today’s traditional energy sources such as hydro electric power, coal, oil and gas. iTi Solar’s vision is to develop new technologies for printheads and nanomaterials that will revolutionize the solar cell market. iTi Solar’s Inkjet Materials Deposition Systems are currently being used for solar research by a number of labs throughout the world, including the U.S. Department of Energy’s National Renewable Energy Laboratory (NREL), the University of New South Wales in Australia and Printed Electronics, Ltd in Cambridge, England.

For more information, please click here

Contacts:
IGNITE Consulting
Linda Dellett, 303-439-9398
Kathleen Sullivan, 303-439-9365

Copyright © Business Wire 2009

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Laboratories

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Three-pronged approach discerns qualities of quantum spin liquids November 17th, 2023

Govt.-Legislation/Regulation/Funding/Policy

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Energy

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

The efficient perovskite cells with a structured anti-reflective layer – another step towards commercialization on a wider scale October 6th, 2023

New-Contracts/Sales/Customers

Bruker Light-Sheet Microscopes at Major Comprehensive Cancer Center: New Advanced Imaging Center Powered by Two MuVi and LCS SPIM Microscopes March 25th, 2021

Arrowhead Pharmaceuticals Announces Closing of Agreement with Takeda November 27th, 2020

Veeco Announces Aledia Order of 300mm MOCVD Equipment for microLED Displays: Propel™ Platform First 300mm System with EFEM Designed for Advanced Display Applications October 20th, 2020

GREENWAVES TECHNOLOGIES Announces Next Generation GAP9 Hearables Platform Using GLOBALFOUNDRIES 22FDX Solution October 16th, 2020

Printing/Lithography/Inkjet/Inks/Bio-printing/Dyes

Presenting: Ultrasound-based printing of 3D materials—potentially inside the body December 8th, 2023

Simple ballpoint pen can write custom LEDs August 11th, 2023

Disposable electronics on a simple sheet of paper October 7th, 2022

Newly developed technique to improve quantum dots color conversion performance: Researchers created perovskite quantum dot microarrays to achieve better results in full-color light-emitting devices and expand potential applications June 10th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project