Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > National Renewable Energy Laboratory Installs iTi Solar Inkjet and Sprayer Systems: Systems to Be Used for Advanced Solar Cell Research

Abstract:
iTi Solar today announced that the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) has installed inkjet and spray workstations supplied by iTi Solar in NREL's advanced Atmospheric Processing Platform, which is located in the Process Development and Integration Laboratory at the National Center for Photovoltaics. NREL will use the iTi Solar workstations to develop low-cost atmospheric processing methods and materials for use in photovoltaic applications. iTi Solar is a division of iTi Corporation dedicated to advancing the economics of clean, renewable energy through the use of industrial inkjet technologies.

National Renewable Energy Laboratory Installs iTi Solar Inkjet and Sprayer Systems: Systems to Be Used for Advanced Solar Cell Research

Boulder, CO | Posted on April 22nd, 2009

For many applications, solar cells today are not cost-competitive with more traditional sources of energy. Reducing material costs and process inefficiencies through inkjet technology is an important component in NREL's research project to reduce costs. Inkjet is emerging as a versatile, precise printing method to advance manufacturing processes while lowering substrate, materials and capital costs.

iTi Solar's Materials Deposition Systems (MDS), which are being used as part of NREL's research project, enable digital deposition of a wide range of fluids utilizing inkjet printhead and sprayer technologies. Inkjet technologies offer manufacturing cost efficiencies for silicon-based, thin-film and next generation photovoltaic cells.

"Inkjet printing is an attractive, viable alternative to many existing deposition approaches and has the potential to produce high-quality solar cells at reduced cost," said Dr. Maikel van Hest, scientist, NREL. "After a global competition, we selected iTi Solar's inkjet and sprayer systems."

Much of today's research is focused on thin-film photovoltaic cells as thin-film technology uses lower cost substrates compared to silicon and is suitable for applying solar panels to many surfaces from roof shingles to cell phones. Compared with traditional processes of coating, sputtering and etching, inkjet is an additive, direct material deposition process. Drop placement is digitally controlled so that only what is required is precisely deposited. This offers considerable savings in applications utilizing high cost fluids by reducing waste and raw material volumes. Because inkjet deposition is non-contact, there is less damage to materials and therefore a wider range of highly efficient but fragile substrate materials can be utilized in manufacturing.

Inkjet processes have the potential to greatly simplify the fabrication of solar panels by reducing the number of manufacturing steps, making more efficient use of expensive materials, and eliminating much of the vacuum equipment that often requires a clean room environment.

"Addressing the global need for efficient, economic renewable energy requires technology breakthroughs that improve conversion efficiencies and enable low-cost manufacturing to drive mass scale production," said Dr. Ross Mills, chairman, founder and chief technology officer, iTi Corporation. "We believe inkjet technologies combined with flexible, thin-film substrates hold the greatest promise for significantly reducing solar cell manufacturing costs and accelerating the use of solar energy."

"Substantial inkjet knowledge and expertise is crucial to successfully incorporate inkjet processes into production lines," added Mills. "With extensive experience and patented inkjet technologies, iTi is leveraging its proven leadership in mastering the intricacies of inkjet to deliver reliable, cost-effective manufacturing solutions to the solar industry."

NREL's Atmospheric Processing Platform is a sophisticated, multi-functional process line with integrated vacuum processing, materials analysis, inkjet and spray stations housed within atmospherically controlled chambers. Its purpose is to facilitate NREL research into the materials and processes required to reduce the manufacturing costs of solar cell technology.

####

About iTi Solar
iTi Solar, a division of imaging Technology international (iTi) Corporation, has been established to advance the economics of clean, renewable energy through the use of industrial inkjet technologies. iTi Solar develops precision industrial inkjet systems for use in the manufacturing of efficient, low-cost solar cells. Inkjet technologies combined with flexible, thin film substrates have the potential to significantly reduce solar cell manufacturing costs, producing solar energy that cost less than today’s traditional energy sources such as hydro electric power, coal, oil and gas. iTi Solar’s vision is to develop new technologies for printheads and nanomaterials that will revolutionize the solar cell market. iTi Solar’s Inkjet Materials Deposition Systems are currently being used for solar research by a number of labs throughout the world, including the U.S. Department of Energy’s National Renewable Energy Laboratory (NREL), the University of New South Wales in Australia and Printed Electronics, Ltd in Cambridge, England.

For more information, please click here

Contacts:
IGNITE Consulting
Linda Dellett, 303-439-9398
Kathleen Sullivan, 303-439-9365

Copyright © Business Wire 2009

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

MRI, on a molecular scale: Researchers develop system that could one day peer into the atomic structure of individual molecules April 20th, 2014

Iranian Researchers Present New Model to Strengthen Superconductivity at Higher Temperatures April 19th, 2014

Iranian Researchers Produce New Anti-Cancer Drug from Turmeric April 19th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Laboratories

Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity: X-rays reveal how rapidly vanishing 'charge stripes' may be behind laser-induced high-temperature superconductivity April 16th, 2014

'Life Redesigned: The Emergence of Synthetic Biology' Lecture at Brookhaven Lab on Wednesday, April 30: Biomedical Engineer James Collins to Speak for BSA Distinguished Lecture Series April 16th, 2014

Relieving electric vehicle range anxiety with improved batteries: Lithium-sulfur batteries last longer with nanomaterial-packed cathode April 16th, 2014

Energy Research Facility Construction Project at Brookhaven Lab Wins U.S. Energy Secretary's Achievement Award April 16th, 2014

Govt.-Legislation/Regulation/Funding/Policy

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Novel stapled peptide nanoparticle combination prevents RSV infection, study finds April 17th, 2014

INSCX™ exchange to present Exchange trade reporting mechanism for engineered nanomaterials (NMs) to UK regulation agencies, insurers and upstream/downstream users April 17th, 2014

Announcements

MRI, on a molecular scale: Researchers develop system that could one day peer into the atomic structure of individual molecules April 20th, 2014

Iranian Researchers Present New Model to Strengthen Superconductivity at Higher Temperatures April 19th, 2014

Iranian Researchers Produce New Anti-Cancer Drug from Turmeric April 19th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Energy

High-temperature plasmonics eyed for solar, computer innovation April 17th, 2014

Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity: X-rays reveal how rapidly vanishing 'charge stripes' may be behind laser-induced high-temperature superconductivity April 16th, 2014

Engineers develop new materials for hydrogen storage April 15th, 2014

A molecular approach to solar power: Switchable material could harness the power of the sun — even when it’s not shining April 15th, 2014

New-Contracts/Sales/Customers

Industrial Nanotech, Inc. Lands First Major Order from Pemex, Mexico’s State-Owned Oil and Gas Company April 14th, 2014

TED Selects Nanotech for Branding and Security on 30th Anniversary Conferences: Nanotech and TED collaborate to create a custom security feature using nano-imaging March 17th, 2014

Simon Fraser University Completes Installation of Electron Microscopes from FEI: SFU’s new multi-million-dollar Centre for Soft Materials now offers the most advanced suite of microscopes in Western Canada March 11th, 2014

Arrowhead Receives Regulatory Approval to Begin Phase 2a Trial of Chronic Hepatitis B Candidate ARC-520 March 3rd, 2014

Printing/Lithography/Inkjet

Conductive Inks: booming to $2.8 billion by 2024 April 17th, 2014

Transparent Conductive Films and Sensors Are Hot Segments in Printed Electronics: Start-ups in these fields show above-average momentum, while companies working on emissive displays such as OLED are fading, Lux Research says April 17th, 2014

Obducat has launched a new generation of SINDRE® Nano Imprint production system April 11th, 2014

Printed Electronics Europe - Plastic Logic shows a flexible OLED display for wearable devices April 11th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE