Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Scientists develop world’s smallest diamond transistor

Abstract:
Scientists at the University of Glasgow have developed the world's smallest diamond transistor.

At just 50 nanometres in length the ‘gate' of the diamond transistor developed by Dr David Moran, of the Department of Electronics & Electrical Engineering, is more than 1000 times smaller than the thickness of a human hair, and is half the size of the previous smallest diamond transistor developed by Japanese firm NTT.

Scientists develop world’s smallest diamond transistor

Glasgow, UK | Posted on April 17th, 2009

Diamond is heralded as being an ideal material for the next generation of nanoscale electronic devices due to its amazing and unique properties and could help scientists develop nascent technologies such as Terahertz Imaging and Automotive Collision Detection.

The ‘gate' of a transistor is used to control the flow of current between two electrical contact points, acting as a switch or an amplifier. The smaller the gate, the faster the transistor works.

Dr Moran said: "From its invention in 1947, the transistor has been the building block of many modern day technologies, from silicon based chips in your computer processor, to gallium arsenide based circuits in your mobile phone. The gate of the transistor (the section in the middle) developed by Dr Moran is just 50 nanometres in length.

"These types of materials - silicon and gallium arsenide - are chosen upon what their strengths and weaknesses are. Diamond on the other hand is very much an excellent all-round performer, and has been described by many as a perfect material.

"By developing a diamond transistor technology, we aim to tap into the truly amazing properties of this exciting material which could prove fundamental to the development of several next generation technologies."

Such technologies include Terahertz Imaging and Automotive Collision Detection.

Terahertz imaging uses terahertz radiation (T-rays) - electromagnetic waves of a frequency range between that of microwaves and infrared which can penetrate a range of materials, including clothes and flesh - to create a picture.

Because it is non-ionising, it does not damage cells and has potential applications in
security scanners to detect concealed weapons through clothes as well as safer medical imaging.

Automotive collision detection or automotive radar is an advanced safety feature currently being heavily researched by the car industry with which a car or other automotive vehicle will have an effective radar zone around it that will allow it to detect potential collisions from any side of the vehicle well in advance and take avoiding action.

Dr Moran added: "These applications require a very fast and ideally high-power transistor technology that needs to be able to operate in adverse weather/temperature conditions. This is where a diamond transistor technology would excel".

The diamond itself is artificially made by UK firm Element 6 through a process called chemical vapour deposition.

The creation of the tiny device is part of a five-year project funded by the Engineering & Physical Sciences Research Council (EPSRC) and is the result of a collaborative project between the University of Glasgow and Heriot Watt University. Its construction was only possible through the multi-million pound facilities within the James Watt Nanofabrication Centre at the University of Glasgow where electron beam lithography was employed to create patterns and structures on the miniscule sliver of diamond.

The University of Glasgow has one of the most advanced large area high-resolution electron beam lithography tools in the world.

####

For more information, please click here

Contacts:
Stuart Forsyth
University of Glasgow
Media Relations Office
44 0141 330 4831

Copyright © University of Glasgow

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

Tripling the Energy Storage of Lithium-Ion Batteries: Scientists have synthesized a new cathode material from iron fluoride that surpasses the capacity limits of traditional lithium-ion batteries June 14th, 2018

New optical sensor can determine if molecules are left or right 'handed' June 13th, 2018

Nickel ferrite promotes capacity and cycle stability of lithium-sulfur battery June 13th, 2018

Imaging

New optical sensor can determine if molecules are left or right 'handed' June 13th, 2018

Nano-saturn: Supramolecular complex formation: Anthracene macrocycle and C60 fullerene June 8th, 2018

Chip Technology

Making quantum puddles: Physicists discover how to create the thinnest liquid films ever June 13th, 2018

Leti Presenting Strategic Vision and Hosting a Workshop at SEMICON West: “From Electrons to Photons” Leti Workshop and CEO Media Briefing Set for Tuesday, July 10 in W Hotel, San Francisco June 12th, 2018

Nanometrics Updates Time of Webcast at Stifel 2018 Cross Sector Insight Conference June 12th, 2018

Does nanoconfinement affect the interaction between two materials placed in contact? It ispossible to estimate how nanoconfinement affects the number of contacts formed by two materials placed in intimate contact and, hence, the interfacial interactions June 7th, 2018

Nanoelectronics

Leti Presenting Strategic Vision and Hosting a Workshop at SEMICON West: “From Electrons to Photons” Leti Workshop and CEO Media Briefing Set for Tuesday, July 10 in W Hotel, San Francisco June 12th, 2018

Quantum Interference May Be Key to Smaller Insulators: Breakthrough could jumpstart further miniaturization of transistors June 6th, 2018

Building nanomaterials for next-generation computing: Scientists recently developed a blueprint to fabricate new nanoheterostructures using 2D materials June 1st, 2018

Rare element to provide better material for high-speed electronics May 30th, 2018

Discoveries

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

Tripling the Energy Storage of Lithium-Ion Batteries: Scientists have synthesized a new cathode material from iron fluoride that surpasses the capacity limits of traditional lithium-ion batteries June 14th, 2018

Graphene carpets: So neurons communicate better: Research by SISSA reveals that graphene can strengthen neuronal activity, confirming the unique properties of this nanomaterial. The study has been published on Nature Nanotechnology June 13th, 2018

Announcements

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

Tripling the Energy Storage of Lithium-Ion Batteries: Scientists have synthesized a new cathode material from iron fluoride that surpasses the capacity limits of traditional lithium-ion batteries June 14th, 2018

New optical sensor can determine if molecules are left or right 'handed' June 13th, 2018

Tools

Nanometrics Updates Time of Webcast at Stifel 2018 Cross Sector Insight Conference June 12th, 2018

Nano-saturn: Supramolecular complex formation: Anthracene macrocycle and C60 fullerene June 8th, 2018

Detecting the birth and death of a phonon June 7th, 2018

Scientists use photonic chip to make virtual movies of molecular motion June 6th, 2018

Automotive/Transportation

Nickel ferrite promotes capacity and cycle stability of lithium-sulfur battery June 13th, 2018

Northwestern researchers predict materials to stabilize record-high capacity lithium-ion battery: Advancement could pave the way for less expensive, longer-lasting batteries for electric vehicles May 29th, 2018

Harvesting clean hydrogen fuel through artificial photosynthesis May 3rd, 2018

Research gives new ray of hope for solar fuel April 27th, 2018

Printing/Lithography/Inkjet/Inks/Bio-printing

Making carbon nanotubes as usable as common plastics: Researchers discover that cresols disperse carbon nanotubes at unprecedentedly high concentrations May 15th, 2018

New 4-D printer could reshape the world we live in March 20th, 2018

Leti & Mapper announce cyber-security breakthrough that encrypts individual chips with a code: Low-Cost Cyber-Security Breakthrough that Encrypts Individual Chips With a Unique Code Presented at SPIE Advanced Lithography 2018 in San Jose March 2nd, 2018

Basque researchers turn light upside down February 23rd, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project