Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Novel CU-Boulder Technique Shrinks Size of Nanotechnology Circuitry

Abstract:
A University of Colorado at Boulder team has developed a new method of shrinking the size of circuitry used in nanotechnology devices like computer chips and solar cells by using two separate colors of light.

Novel CU-Boulder Technique Shrinks Size of Nanotechnology Circuitry

Boulder, CO | Posted on April 16th, 2009

Like current methods in the nanoengineering field, one color of light inscribes a pattern on a substrate, said CU-Boulder Assistant Professor Robert McLeod of the electrical, computer and energy engineering department. But the new system developed by McLeod's team uses a second color to "erase" the edges of the pattern, resulting in much smaller structures.

The team used tightly focused beams of blue light to record lines and dots thousands of times smaller than the width of a human hair into patterned lithography on a substrate, said McLeod. The researchers then "chopped off the edges" of the lines using a halo of ultraviolet light, trimming the width of the lines significantly.

"We are essentially drawing a line with a marker on a nanotechnology scale and then erasing its edges," said McLeod. The method offers potential new approaches in the search for ways to shrink transistor circuitry, a process that drives the global electronic market that is pursuing smaller, more powerful microchips, said McLeod.

A paper on the subject was published in the April 10 issue of Science Express, the online version of Science magazine. CU-Boulder co-authors included Timothy Scott and Christopher Bowman of the chemical and biological engineering department and graduate students Benjamin Kowalski and Amy Sullivan of the electrical, computer and energy engineering department. Sullivan is now a professor at Agnes Scott College in Decatur, Ga.

For the project, McLeod and his team used a tabletop laser to project tightly focused beams of visible blue light onto liquid molecules known as monomers. A chemical reaction initiated a bonding of the monomers into a plastic-like polymer solid, he said. If the beam was focused in one place, it inscribed a small solid dot. If the beam was moving the focus through the material, it created a thin thread, or line.

The researchers then added a second ultraviolet laser focused into a halo, or donut, which surrounded the blue light. The special monomer formulation was designed to be inhibited by the UV light, shutting down its transformation from a liquid to a solid, he said. This "halo of inhibition" prevented the edges of the spot or line from developing, resulting in a much finer final structure.

The process may be another step in "Moore's Law," a trend described by Intel co-founder George Moore in 1965, which predicted that the number of transistors that can be placed on a single integrated circuit doubles about every 18 months. Since the technology industry is driven by Moore's Law, a stall in such advances would cause huge shockwaves for companies that make chips to power up devices like digital cameras, Blackberries and iPods even as they shrink them.

The new technology has the potential to lead to the construction of a variety of nanotechnology devices, including "nanomotors," said McLeod. "We now have a set of new tools. We believe this is a new way to do nanotechnology."

The research effort was funded by the National Science Foundation and through the University of Colorado Innovative Seed Program. A preliminary patent based on the technology has been filed by the CU-Boulder research team.

####

For more information, please click here

Contacts:
Robert McLeod
303-735-0997

Jim Scott
303-492-3114

Copyright © University of Colorado at Boulder

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Supersonic waves may help electronics beat the heat May 18th, 2018

New blood test rapidly detects signs of pancreatic cancer May 17th, 2018

Disability Can Be a Superpower in Space Disabled astronauts offer unique solutions to emergencies in space May 17th, 2018

Deeper understanding of quantum chaos may be the key to quantum computers May 16th, 2018

Govt.-Legislation/Regulation/Funding/Policy

Supersonic waves may help electronics beat the heat May 18th, 2018

New blood test rapidly detects signs of pancreatic cancer May 17th, 2018

Deeper understanding of quantum chaos may be the key to quantum computers May 16th, 2018

Team achieves two-electron chemical reactions using light energy, gold May 15th, 2018

Nanoelectronics

Supersonic waves may help electronics beat the heat May 18th, 2018

Strain improves performance of atomically thin semiconductor material May 11th, 2018

Nanoscale measurements 100x more precise, thanks to improved two-photon technique May 8th, 2018

Getting electrons to move in a semiconductor: Gallium oxide shows high electron mobility, making it promising for better and cheaper devices April 24th, 2018

Discoveries

Supersonic waves may help electronics beat the heat May 18th, 2018

New blood test rapidly detects signs of pancreatic cancer May 17th, 2018

Deeper understanding of quantum chaos may be the key to quantum computers May 16th, 2018

Making carbon nanotubes as usable as common plastics: Researchers discover that cresols disperse carbon nanotubes at unprecedentedly high concentrations May 15th, 2018

Announcements

Supersonic waves may help electronics beat the heat May 18th, 2018

New blood test rapidly detects signs of pancreatic cancer May 17th, 2018

Disability Can Be a Superpower in Space Disabled astronauts offer unique solutions to emergencies in space May 17th, 2018

Deeper understanding of quantum chaos may be the key to quantum computers May 16th, 2018

Energy

Team achieves two-electron chemical reactions using light energy, gold May 15th, 2018

Hematene joins parade of new 2D materials: Rice University-led team extracts 3-atom-thick sheets from common iron oxide May 8th, 2018

A designer's toolkit for constructing complex nanoparticles May 5th, 2018

Scientists Pinpoint Energy Flowing Through Vibrations in Superconducting Crystals: Interactions between electrons and the atomic structure of high-temperature superconductors impacted by elusive and powerful vibrations May 4th, 2018

Solar/Photovoltaic

Team achieves two-electron chemical reactions using light energy, gold May 15th, 2018

Hematene joins parade of new 2D materials: Rice University-led team extracts 3-atom-thick sheets from common iron oxide May 8th, 2018

Harvesting clean hydrogen fuel through artificial photosynthesis May 3rd, 2018

Research gives new ray of hope for solar fuel April 27th, 2018

Construction

Weak hydrogen bonds key to strong, tough infrastructure: Rice University lab simulates polymer-cement composites to find strongest, toughest materials January 29th, 2018

The next generation of power electronics? Gallium nitride doped with beryllium: How to cut down energy loss in power electronics? The right kind of doping November 9th, 2017

Corrosion in real time: UCSB researchers get a nanoscale glimpse of crevice and pitting corrosion as it happens September 14th, 2017

Here's a tip: Indented cement shows unique properties: Rice University models reveal nanoindentation can benefit crystals in concrete July 20th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project