Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Novel CU-Boulder Technique Shrinks Size of Nanotechnology Circuitry

Abstract:
A University of Colorado at Boulder team has developed a new method of shrinking the size of circuitry used in nanotechnology devices like computer chips and solar cells by using two separate colors of light.

Novel CU-Boulder Technique Shrinks Size of Nanotechnology Circuitry

Boulder, CO | Posted on April 16th, 2009

Like current methods in the nanoengineering field, one color of light inscribes a pattern on a substrate, said CU-Boulder Assistant Professor Robert McLeod of the electrical, computer and energy engineering department. But the new system developed by McLeod's team uses a second color to "erase" the edges of the pattern, resulting in much smaller structures.

The team used tightly focused beams of blue light to record lines and dots thousands of times smaller than the width of a human hair into patterned lithography on a substrate, said McLeod. The researchers then "chopped off the edges" of the lines using a halo of ultraviolet light, trimming the width of the lines significantly.

"We are essentially drawing a line with a marker on a nanotechnology scale and then erasing its edges," said McLeod. The method offers potential new approaches in the search for ways to shrink transistor circuitry, a process that drives the global electronic market that is pursuing smaller, more powerful microchips, said McLeod.

A paper on the subject was published in the April 10 issue of Science Express, the online version of Science magazine. CU-Boulder co-authors included Timothy Scott and Christopher Bowman of the chemical and biological engineering department and graduate students Benjamin Kowalski and Amy Sullivan of the electrical, computer and energy engineering department. Sullivan is now a professor at Agnes Scott College in Decatur, Ga.

For the project, McLeod and his team used a tabletop laser to project tightly focused beams of visible blue light onto liquid molecules known as monomers. A chemical reaction initiated a bonding of the monomers into a plastic-like polymer solid, he said. If the beam was focused in one place, it inscribed a small solid dot. If the beam was moving the focus through the material, it created a thin thread, or line.

The researchers then added a second ultraviolet laser focused into a halo, or donut, which surrounded the blue light. The special monomer formulation was designed to be inhibited by the UV light, shutting down its transformation from a liquid to a solid, he said. This "halo of inhibition" prevented the edges of the spot or line from developing, resulting in a much finer final structure.

The process may be another step in "Moore's Law," a trend described by Intel co-founder George Moore in 1965, which predicted that the number of transistors that can be placed on a single integrated circuit doubles about every 18 months. Since the technology industry is driven by Moore's Law, a stall in such advances would cause huge shockwaves for companies that make chips to power up devices like digital cameras, Blackberries and iPods even as they shrink them.

The new technology has the potential to lead to the construction of a variety of nanotechnology devices, including "nanomotors," said McLeod. "We now have a set of new tools. We believe this is a new way to do nanotechnology."

The research effort was funded by the National Science Foundation and through the University of Colorado Innovative Seed Program. A preliminary patent based on the technology has been filed by the CU-Boulder research team.

####

For more information, please click here

Contacts:
Robert McLeod
303-735-0997

Jim Scott
303-492-3114

Copyright © University of Colorado at Boulder

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Govt.-Legislation/Regulation/Funding/Policy

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Nanoelectronics

Supersonic spray yields new nanomaterial for bendable, wearable electronics: Film of self-fused nanowires clear as glass, conducts like metal November 23rd, 2016

What a twist: Silicon nanoantennas turn light around: The theoretical results will allow scientists to design nanodevices with extraordinary features for use in optoelectronics November 21st, 2016

2-D material a brittle surprise: Rice University researchers finds molybdenum diselenide not as strong as they thought November 14th, 2016

UCR researchers discover new method to dissipate heat in electronic devices: By modulating the flow of phonons through semiconductor nanowires, engineers can create smaller and faster devices November 13th, 2016

Discoveries

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Announcements

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Energy

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Physics, photosynthesis and solar cells: Researchers combine quantum physics and photosynthesis to make discovery that could lead to highly efficient, green solar cells November 30th, 2016

Solar/Photovoltaic

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Physics, photosynthesis and solar cells: Researchers combine quantum physics and photosynthesis to make discovery that could lead to highly efficient, green solar cells November 30th, 2016

'Back to the Future' inspires solar nanotech-powered clothing November 15th, 2016

Construction

Diamond nanothread: Versatile new material could prove priceless for manufacturing: Would you dress in diamond nanothreads? It's not as far-fetched as you might think November 3rd, 2016

DryWired's Liquid Nanotint to be the first nano-insulation in a Federal building: 250,000 federal buildings, most with uninsulated glass October 12th, 2016

New flexible material can make any window 'smart' August 23rd, 2016

Cement design should take into account the water confined in the smallest pores: A researcher at the UPV/EHU-University of the Basque Country is participating in the study of the stresses of confined water in the micropores of cement at extreme temperatures August 11th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project