Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > New Photolithography Technique Advances Nanofabrication Process

Schematic depictions of RAPID lithography, the technique developed by John Fourkas and colleagues which enables the creation of features 2500 times smaller than the width of a human hair.
Schematic depictions of RAPID lithography, the technique developed by John Fourkas and colleagues which enables the creation of features 2500 times smaller than the width of a human hair.

Abstract:
The ability to create tiny patterns is essential to the fabrication of computer chips as well as to many other current and potential applications of nanotechnology. Yet, creating ever smaller features, through a process called photolithography, has required the use of ultraviolet light, which is difficult and expensive to work with. John Fourkas, Professor of Chemistry and Biochemistry in the University of Maryland College of Chemical and Life Sciences, and his research group have developed a new, table-top technique called RAPID (Resolution Augmentation through Photo-Induced Deactivation) lithography that makes it possible to create small features without the use of ultraviolet light. This research is to be published in Science magazine and released on Science Express on April 9, 2009.

New Photolithography Technique Advances Nanofabrication Process

College Park, MD | Posted on April 15th, 2009

Photolithography uses light to deposit or remove material and create patterns on a surface. There is usually a direct relationship between the wavelength of light used and the feature size created. Therefore, nanofabrication has depended on short wavelength ultraviolet light to generate ever smaller features.

"The RAPID lithography technique we have developed enables us to create patterns twenty times smaller than the wavelength of light employed," explains Dr. Fourkas, "which means that it streamlines the nanofabrication process. We expect RAPID to find many applications in areas such as electronics, optics, and biomedical devices."

"If you have gotten a filling at the dentist in recent years," says Fourkas, "you have seen that a viscous liquid is squirted into the cavity and a blue light is then used to harden it. A similar process of hardening using light is the first element of RAPID. Now imagine that your dentist could use a second light source to sculpt the filling by preventing it from hardening in certain places. We have developed a way of using a second light source to perform this sculpting, and it allows us to create features that are 2500 times smaller than the width of a human hair."

Both of the laser light sources used by Fourkas and his team were of the same color, the only difference being that the laser used to harden the material produced short bursts of light while the laser used to prevent hardening was on constantly. The second laser beam also passed through a special optic that allowed for sculpting of the hardened features in the desired shape.

"The fact that one laser is on constantly in RAPID makes this technique particularly easy to implement," says Fourkas, "because there is no need to control the timing between two different pulsed lasers."

Fourkas and his team are currently working on improvements to RAPID lithography that they believe will make it possible to create features that are half of the size of the ones they have demonstrated to date.

Achieving lambda/20 Resolution by One-Color Initiation and Deactivation of Polymerization was written by Linjie Li, Rafael R. Gattass, Erez Gershgorem, Hana Hwang and John T. Fourkas.

####

For more information, please click here

Contacts:
College of Chemical & Life Science
University of Maryland
College Park, MD 20742

Copyright © University of Maryland

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Making magnets flip like cats at room temperature: Heusler alloy NiMnSb could prove valuable as a new material for digital information processing and storage July 25th, 2016

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

Russian physicists discover a new approach for building quantum computers: Physicists find a way of 'bundling together' multiple elements of a quantum computer July 24th, 2016

A 'smart dress' for oil-degrading bacteria July 24th, 2016

New probe developed for improved high resolution measurement of brain temperature: Improved accuracy could allow researchers to measure brain temperature in times of trauma when small deviations in temperature can lead to additional brain injury July 23rd, 2016

Videos/Movies

New remote-controlled microrobots for medical operations July 23rd, 2016

Scientists glimpse inner workings of atomically thin transistors July 21st, 2016

Graphene photodetectors: Thinking outside the 2-D box July 21st, 2016

Chip Technology

Making magnets flip like cats at room temperature: Heusler alloy NiMnSb could prove valuable as a new material for digital information processing and storage July 25th, 2016

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

Russian physicists discover a new approach for building quantum computers: Physicists find a way of 'bundling together' multiple elements of a quantum computer July 24th, 2016

Quantum drag:University of Iowa physicist says current in one iron magnetic sheet can create quantized spin waves in another, separate sheet July 22nd, 2016

Discoveries

Making magnets flip like cats at room temperature: Heusler alloy NiMnSb could prove valuable as a new material for digital information processing and storage July 25th, 2016

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

Russian physicists discover a new approach for building quantum computers: Physicists find a way of 'bundling together' multiple elements of a quantum computer July 24th, 2016

A 'smart dress' for oil-degrading bacteria July 24th, 2016

Announcements

Making magnets flip like cats at room temperature: Heusler alloy NiMnSb could prove valuable as a new material for digital information processing and storage July 25th, 2016

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

Russian physicists discover a new approach for building quantum computers: Physicists find a way of 'bundling together' multiple elements of a quantum computer July 24th, 2016

A 'smart dress' for oil-degrading bacteria July 24th, 2016

Printing/Lithography/Inkjet/Inks

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Perovskite solar cells surpass 20 percent efficiency: EPFL researchers are pushing the limits of perovskite solar cell performance by exploring the best way to grow these crystals June 13th, 2016

'On-the-fly' 3-D print system prints what you design, as you design it June 1st, 2016

Physicists create first metamaterial with rewritable magnetic ordering May 23rd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic