Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Next Generation Nanofilms Created

Abstract:
New research described in AIP's the Journal of Chemical Physics may lead to better molecular electronics, ultra-thin materials, and understanding of proteins in the human body.

Next Generation Nanofilms Created

College Park, MD | Posted on April 14th, 2009

With the human genome in hand, biochemists have cataloged the 3-D structures of thousands of proteins isolated from living cells. But one important class of proteins -- those stuck in the cell membranes -- has proven difficult to extract and study in 3-D crystals. Now an international team of scientists has developed a way to train such molecules to line up neatly on the surface of water in thin, tissue-like layers called nanofilms. This technique should allow biochemists to better see and study the molecules and may lead to a new generation of molecular electronics and ultra-thin materials only one molecule thick.

"To the best of our knowledge, this is the first time aligned films less than a nanometer thick have been produced," say Iftach Nevo, a Marie Curie fellow at the University of Aarhus in Denmark, and Leslie Leiserowitz of the Weizmann Institute of Science in Israel. Together with their colleagues at these institutions and at the Max-Planck Institute of Colloids and Interfaces in Germany and Northwestern University in Evanston, they describe their research in the 14 April 2009 issue of The Journal of Chemical Physics, published by the American Institute of Physics.

One way of creating a nanofilm is to build it on the surface of water. First, the building blocks of the film are dissolved in a volatile substance. When a drop of this solution is splashed onto water, the solvent evaporates. The building blocks left floating on the water interact with each other and spontaneously come together -- like soap scum in a bathtub -- to create a thin crystalline layer.

The shortcoming of this technique is that the thin crystals in the film created will be a mess. Like a mob in a dance club, molecules floating on a surface tend to spin around chaotically with little regard for order. Different patches of molecules will point different, random directions. Because the orientation of these molecules dictates the electrical, magnetic, and optical properties of the final film, these jumbled regions are difficult to develop into useful technologies. They are also difficult to analyze using imaging techniques like X-ray diffraction.

To force the molecules to line up, the team blasted them with nanosecond laser pulses. These pulses create an electric field that interacts with the molecules, rotating them slowly. The electric field associated with these laser pulses is polarized, filtered so that all of the light waves vibrate in the same direction. Molecules caught in the laser feel most stable when they line up along this direction, a process analogous to the needle in a compass swinging to line up with the Earth's magnetic field. Eventually, this forms an aligned film with long range order.

The technique has not been completely perfected yet. Its success rate is about 30 percent, but the group believes that a better understanding of what is happening during the evaporation process and how the molecules interact with each other just before solidifying into a film will improve the efficiency.

When these molecules line up in a stable 2-D layer, their structures can be seen with X-ray imaging techniques normally used on 3-D crystals. "Alignment should enhance the X-ray diffraction intensity by more than two orders of magnitude allowing more detailed structure elucidations," say Nevo and Leiserowitz. The technique could be useful for studying molecules that cannot be easily crystallized in three dimensions -- cell membrane proteins are only one example.

It could also be useful for creating 3-D crystals with aligned structures. The 2-D layer can be used to seed the growth of these crystals, providing a stage on which this growth can be monitored using X-ray diffraction.

Another application is molecular electronics, like field-effect transistors, that require ordered molecules. Also interesting is an emerging class of solar cell technologies that are trying to copy nature by reverse-engineering photosynthesis. The ability to align the molecules in these devices will be important to their effectiveness, explains team member Tamar Seideman of Northwestern University.

Because the technique should work with a variety of molecules, it may pave the way for brand new kinds of self-assembling nanomaterials. "The international team that produced this paper is outstanding, and this is one of those papers that will likely spawn a number of novel applications that haven't been discovered yet," says Edward Castner of Rutgers University, Associate Editor for The Journal of Chemical Physics.

The article "Laser-Induced Self Assembly on Water Surfaces" by Iftach Nevo et al will be published online on April 14, 2009. Journalists can obtain a free copy by emailing

ABOUT THE JOURNAL

The Journal of Chemical Physics, published by the American Institute of Physics (AIP), contains concise and definitive reports of significant research in methods and applications of chemical physics. Innovative research in traditional areas of chemical physics such as spectroscopy, kinetics, statistical mechanics, and quantum mechanics continue to be areas of interest to readers of JCP. In addition, newer areas such as polymers, materials, surfaces/interfaces, information theory, and systems of biological relevance are of increasing importance. See: jcp.aip.org.

####

About American Institute of Physics (AIP)
The American Institute of Physics (AIP) is a not-for-profit membership corporation chartered in 1931 for the purpose of advancement and diffusion of the knowledge of physics and its application to human welfare. An umbrella organization for 10 Member Societies, AIP represents over 134,000 scientists, engineers and educators and is one of the world's largest publishers of physics journals. A total-solution provider of publishing services, AIP also publishes 12 journals of its own (many of which have the highest impact factors in their category), two magazines, and the AIP Conference Proceedings series. Its online publishing platform Scitation (registered trademark) hosts more than 1,000,000 articles from more than 175 scholarly journals, as well as conference proceedings, and other publications of 25 learned society publishers.

For more information, please click here

Contacts:
Devin Powell, AIP
(301) 209-3099

Copyright © Newswise

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

'Stealth' nanoparticles could improve cancer vaccines October 1st, 2014

Stressed Out: Research Sheds New Light on Why Rechargeable Batteries Fail October 1st, 2014

New Absorber Will Lead to Better Biosensor: Biosensors are more sensitive and able to detect smaller changes in the environment October 1st, 2014

Graphene chips are close to significant commercialization October 1st, 2014

Thin films

Southampton scientists grow a new challenger to graphene September 23rd, 2014

Beneq launches nFOG™ wet coating technology September 3rd, 2014

Picosun joins forces with IMEC for novel, industrial ALD applications August 25th, 2014

An Inkjet-Printed Field-Effect Transistor for Label-Free Biosensing August 11th, 2014

Nanoelectronics

$18-million NSF investment aims to take flat materials to new heights: 2-D alternatives to graphene may enable exciting advances in electronics, photonics, sensors and other applications October 1st, 2014

Breakthrough in ALD-graphene by Picosun technology October 1st, 2014

Grenoble Hosting SEMICON Europa Oct. 7-9, First Time Event Held in France: Leti’s 90-square-meter Booth Will Feature Portable Showroom To Demonstrate New Technology Innovations September 24th, 2014

SouthWest NanoTechnologies (SWeNT) Receives NIST Small Business Innovation Research (SBIR) Phase 1 Award to Produce Greater than 99% Semiconducting Single-Wall Carbon Nanotubes September 19th, 2014

Discoveries

Breakthrough in ALD-graphene by Picosun technology October 1st, 2014

Novel approach to magnetic measurements atom-by-atom October 1st, 2014

Nanoparticles Accumulate Quickly in Wetland Sediment: Aquatic food chains might be harmed by molecules "piggybacking" on carbon nanoparticles October 1st, 2014

'Stealth' nanoparticles could improve cancer vaccines October 1st, 2014

Materials/Metamaterials

Rice launches Center for Quantum Materials: RCQM will immerse global visitors in cross-disciplinary research September 30th, 2014

How things coil: Researchers discover that simulation technology designed for Hollywood can be used as a predictive tool for understanding fundamental engineering problems September 29th, 2014

Iranian Scientists Determine Grain Size, Minimize Time of Nanocomposite Synthesis September 29th, 2014

Nanoparticles Used to Improve Quality of Bone Cement September 29th, 2014

Announcements

'Stealth' nanoparticles could improve cancer vaccines October 1st, 2014

Stressed Out: Research Sheds New Light on Why Rechargeable Batteries Fail October 1st, 2014

New Absorber Will Lead to Better Biosensor: Biosensors are more sensitive and able to detect smaller changes in the environment October 1st, 2014

Graphene chips are close to significant commercialization October 1st, 2014

Nanobiotechnology

Ad-REIC vaccine: A magic bullet for cancer treatment September 30th, 2014

How things coil: Researchers discover that simulation technology designed for Hollywood can be used as a predictive tool for understanding fundamental engineering problems September 29th, 2014

Penn Team Studies Nanocrystals by Passing Them Through Tiny Pores September 26th, 2014

New NIH/DOE Grant for Life Science Studies at NSLS-II: Funding will support operation of three powerful experimental stations designed to reveal detailed structures of proteins, viruses, and more September 23rd, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE