Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Next Generation Nanofilms Created

Abstract:
New research described in AIP's the Journal of Chemical Physics may lead to better molecular electronics, ultra-thin materials, and understanding of proteins in the human body.

Next Generation Nanofilms Created

College Park, MD | Posted on April 14th, 2009

With the human genome in hand, biochemists have cataloged the 3-D structures of thousands of proteins isolated from living cells. But one important class of proteins -- those stuck in the cell membranes -- has proven difficult to extract and study in 3-D crystals. Now an international team of scientists has developed a way to train such molecules to line up neatly on the surface of water in thin, tissue-like layers called nanofilms. This technique should allow biochemists to better see and study the molecules and may lead to a new generation of molecular electronics and ultra-thin materials only one molecule thick.

"To the best of our knowledge, this is the first time aligned films less than a nanometer thick have been produced," say Iftach Nevo, a Marie Curie fellow at the University of Aarhus in Denmark, and Leslie Leiserowitz of the Weizmann Institute of Science in Israel. Together with their colleagues at these institutions and at the Max-Planck Institute of Colloids and Interfaces in Germany and Northwestern University in Evanston, they describe their research in the 14 April 2009 issue of The Journal of Chemical Physics, published by the American Institute of Physics.

One way of creating a nanofilm is to build it on the surface of water. First, the building blocks of the film are dissolved in a volatile substance. When a drop of this solution is splashed onto water, the solvent evaporates. The building blocks left floating on the water interact with each other and spontaneously come together -- like soap scum in a bathtub -- to create a thin crystalline layer.

The shortcoming of this technique is that the thin crystals in the film created will be a mess. Like a mob in a dance club, molecules floating on a surface tend to spin around chaotically with little regard for order. Different patches of molecules will point different, random directions. Because the orientation of these molecules dictates the electrical, magnetic, and optical properties of the final film, these jumbled regions are difficult to develop into useful technologies. They are also difficult to analyze using imaging techniques like X-ray diffraction.

To force the molecules to line up, the team blasted them with nanosecond laser pulses. These pulses create an electric field that interacts with the molecules, rotating them slowly. The electric field associated with these laser pulses is polarized, filtered so that all of the light waves vibrate in the same direction. Molecules caught in the laser feel most stable when they line up along this direction, a process analogous to the needle in a compass swinging to line up with the Earth's magnetic field. Eventually, this forms an aligned film with long range order.

The technique has not been completely perfected yet. Its success rate is about 30 percent, but the group believes that a better understanding of what is happening during the evaporation process and how the molecules interact with each other just before solidifying into a film will improve the efficiency.

When these molecules line up in a stable 2-D layer, their structures can be seen with X-ray imaging techniques normally used on 3-D crystals. "Alignment should enhance the X-ray diffraction intensity by more than two orders of magnitude allowing more detailed structure elucidations," say Nevo and Leiserowitz. The technique could be useful for studying molecules that cannot be easily crystallized in three dimensions -- cell membrane proteins are only one example.

It could also be useful for creating 3-D crystals with aligned structures. The 2-D layer can be used to seed the growth of these crystals, providing a stage on which this growth can be monitored using X-ray diffraction.

Another application is molecular electronics, like field-effect transistors, that require ordered molecules. Also interesting is an emerging class of solar cell technologies that are trying to copy nature by reverse-engineering photosynthesis. The ability to align the molecules in these devices will be important to their effectiveness, explains team member Tamar Seideman of Northwestern University.

Because the technique should work with a variety of molecules, it may pave the way for brand new kinds of self-assembling nanomaterials. "The international team that produced this paper is outstanding, and this is one of those papers that will likely spawn a number of novel applications that haven't been discovered yet," says Edward Castner of Rutgers University, Associate Editor for The Journal of Chemical Physics.

The article "Laser-Induced Self Assembly on Water Surfaces" by Iftach Nevo et al will be published online on April 14, 2009. Journalists can obtain a free copy by emailing

ABOUT THE JOURNAL

The Journal of Chemical Physics, published by the American Institute of Physics (AIP), contains concise and definitive reports of significant research in methods and applications of chemical physics. Innovative research in traditional areas of chemical physics such as spectroscopy, kinetics, statistical mechanics, and quantum mechanics continue to be areas of interest to readers of JCP. In addition, newer areas such as polymers, materials, surfaces/interfaces, information theory, and systems of biological relevance are of increasing importance. See: jcp.aip.org.

####

About American Institute of Physics (AIP)
The American Institute of Physics (AIP) is a not-for-profit membership corporation chartered in 1931 for the purpose of advancement and diffusion of the knowledge of physics and its application to human welfare. An umbrella organization for 10 Member Societies, AIP represents over 134,000 scientists, engineers and educators and is one of the world's largest publishers of physics journals. A total-solution provider of publishing services, AIP also publishes 12 journals of its own (many of which have the highest impact factors in their category), two magazines, and the AIP Conference Proceedings series. Its online publishing platform Scitation (registered trademark) hosts more than 1,000,000 articles from more than 175 scholarly journals, as well as conference proceedings, and other publications of 25 learned society publishers.

For more information, please click here

Contacts:
Devin Powell, AIP
(301) 209-3099

Copyright © Newswise

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Arrowhead Pharmaceuticals Files for Regulatory Clearance to Begin Phase 1/2 Study of ARC-521 April 28th, 2016

The Translational Research Center at the University Hospital of Erlangen in Germany uses the ZetaView from Particle Metrix to quantify extracellular vesicles such as exosomes April 28th, 2016

Thin films

Flipping a chemical switch helps perovskite solar cells beat the heat April 26th, 2016

Thin-film solar cells: How defects appear and disappear in CIGSe cells: Concentration of copper plays a crucial role April 23rd, 2016

Making electronics out of coal: Instead of burning up this complex hydrocarbon, let's make devices from it April 20th, 2016

Atomically thin sensor detects harmful air pollution in the home April 18th, 2016

Nanoelectronics

Exploring phosphorene, a promising new material April 29th, 2016

Physicists build 'electronic synapses' for neural networks April 21st, 2016

With simple process, UW-Madison engineers fabricate fastest flexible silicon transistor April 21st, 2016

All powered up: UCI chemists create battery technology with off-the-charts charging capacity April 21st, 2016

Discoveries

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Nanoparticles hold promise as double-edged sword against genital herpes April 28th, 2016

Researchers create a first frequency comb of time-bin entangled qubits: Discovery is a significant step toward multi-channel quantum communication and higher capacity quantum computers April 28th, 2016

Materials/Metamaterials

Exploring phosphorene, a promising new material April 29th, 2016

Hybrid nanoantennas -- next-generation platform for ultradense data recording April 28th, 2016

NREL finds nanotube semiconductors well-suited for PV systems April 27th, 2016

Atomic magnets using hydrogen and graphene April 27th, 2016

Announcements

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Arrowhead Pharmaceuticals Files for Regulatory Clearance to Begin Phase 1/2 Study of ARC-521 April 28th, 2016

The Translational Research Center at the University Hospital of Erlangen in Germany uses the ZetaView from Particle Metrix to quantify extracellular vesicles such as exosomes April 28th, 2016

Nanobiotechnology

Nanoparticles hold promise as double-edged sword against genital herpes April 28th, 2016

Arrowhead Pharmaceuticals Files for Regulatory Clearance to Begin Phase 1/2 Study of ARC-521 April 28th, 2016

The Translational Research Center at the University Hospital of Erlangen in Germany uses the ZetaView from Particle Metrix to quantify extracellular vesicles such as exosomes April 28th, 2016

JPK reports on the use of a NanoWizard AFM system at the University of Kaiserslautern to study the interaction of bacteria with microstructured surfaces April 28th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic