Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > CEA/Leti, IBM to ally on nanoelectronics

Abstract:
CEA/Leti (the Electronics and Information Technology Laboratory of the CEA, based in Grenoble), and IBM announced that they will collaborate on research in semiconductor and nanoelectronics technology.

CEA/Leti, IBM to ally on nanoelectronics

Grenoble, France | Posted on April 13th, 2009

This five-year agreement is focused on advanced materials, devices and processes for the development of complementary metal oxide semiconductor (CMOS) process technology for the production of microprocessors and integrated circuits at 22nm and beyond.

With this agreement, CEA/Leti becomes a research associate of IBM and IBM's semiconductor Joint Development Alliance ecosystem centered in Albany, N.Y. CEA/Leti will reinforce this ecosystem through its specific expertise in low-power CMOS (such as SOI technologies), in e-beam lithography and in nanoscale characterization and modelling. This agreement strengthens the links between the IBM and Crolles-Grenoble ecosystems, following STMicroelectronics' decision to join the IBM Alliance in 2007, for the development of core CMOS and value-added application-specific derivative technologies and industrialization of these processes.

"Due to increasing complexity, CMOS technologies can only be developed through global alliances. CEA/Leti chose to partner with IBM since its alliance directly benefits companies with strong industrial activity based in Europe," said Laurent Malier, General Manager of CEA/Leti. "With 22 and 16nm nodes ahead of us, many challenges remain to be tackled and we are strongly committed to speeding up the advent of the best options for these technologies".

"This agreement reinforces the IBM ecosystem of leading companies and research organizations who are working together to achieve significant advances in semiconductor and nanoelectronics technology," said Scottie Ginn, vice president, IBM design enablement and packaging. "This unique model of collaborative development can help accelerate the production of more powerful and energy efficient chips for next-generation computers, consumer electronics and mobile devices."

Complementary expertise
This collaboration will focus on three key areas:

* Advanced lithography for fast prototyping and 22nm chip technology.
* CMOS technologies and low-power devices for 22nm chip technology and beyond.
* Technology enablement, including innovative nanoscale characterization techniques for research and for the monitoring of manufacturing protocols.

This development work will bring complementary expertise to the IBM Research Alliance. Research work will be carried out on CEA/Leti's 300mm silicon platform in Grenoble, as well as at the College of Nanoscale Science and Engineering of the University at Albany, N.Y., STMicroelectronics' facility in Crolles, and IBM's 300mm fab in East Fishkill, N.Y. A team from CEA/Leti will be assigned to work on the program at Albany Nanotech.

This agreement reinforces CEA/Leti's role as a supporter of the European microelectronics industry, as the results of this cooperation will benefit European partners of the IBM Alliance as well as the users of the alliance technology.

####

Copyright © CEA/Leti

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Manchester scientists tie the tightest knot ever achieved January 13th, 2017

Chip Technology

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

New laser based on unusual physics phenomenon could improve telecommunications, computing January 12th, 2017

Nanoelectronics

Nano-chimneys can cool circuits: Rice University scientists calculate tweaks to graphene would form phonon-friendly cones January 4th, 2017

Advance in intense pulsed light sintering opens door to improved electronics manufacturing December 23rd, 2016

Fast track control accelerates switching of quantum bits December 16th, 2016

GLOBALFOUNDRIES Demonstrates Industry-Leading 56Gbps Long-Reach SerDes on Advanced 14nm FinFET Process Technology: Proven ASIC IP solution will enable significant performance and power efficiency improvements for next-generation high-speed applications December 13th, 2016

Announcements

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Alliances/Trade associations/Partnerships/Distributorships

GLOBALFOUNDRIES Expands Partner Program to Speed Time-to-Market of FDX™ Solutions: Increased support affirms FDXcelerator™ Program’s vital role in promoting broader deployment of GLOBALFOUNDRIES’ FDX™ portfolio December 15th, 2016

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Leti and Grenoble Partners Demonstrate World’s 1st Qubit Device Fabricated in CMOS Process: Paper by Leti, Inac and University of Grenoble Alpes Published in Nature Communications November 28th, 2016

Mechanism for sodium storage in 2-D material: Tin selenide is an effective host for storing sodium ions, making it a promising material for sodium ion batteries October 27th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project