Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > It's a fine line

Abstract:
New method could lead to narrower chip patterns

It's a fine line

Cambridge, MA | Posted on April 11th, 2009

David Chandler: Researchers at MIT have found a novel method for etching extremely narrow lines on a microchip, using a material that can be switched from transparent to opaque, and vice versa, just by exposing it to certain wavelengths of light.

Such materials are not new, but the researchers found a novel way of harnessing that property to create a mask with exceptionally fine lines of transparency. This mask can then be used to create a correspondingly fine line on the underlying material.

Producing such fine lines is crucial to many new technologies, from microchip manufacturing that is constantly seeking ways to cram more components onto a single chip, to a whole host of emerging fields based on nano-scale patterns. But these technologies have faced fundamental limits because they tend to rely on light to produce these patterns, and most techniques cannot produce patterns much smaller than the wavelengths of light itself. This method is a way of overcoming that limit.

The key is using interference patterns, in which different wavelengths of light sometimes reinforce each other and in other places cancel each other out. The researchers exposed the photochromic material -- one that changes its color, and therefore its transparency, in response to light -- to a pair of such patterns, each of a different wavelength, simultaneously. When the bright lines at one wavelength coincide with the dark lines at the other wavelength, extremely narrow lines of clear material are formed interspersed with the opaque material. This banded layer then serves as a mask through which the first wavelength illuminates a layer of material underneath, similarly to the way a photographic negative is used to make a print by shining light through it onto a sheet of photo paper underneath.

The research was carried out by research engineer Rajesh Menon of the Research Laboratory of Electronics and graduate students Trisha Andrew in the Department of Chemistry and Hsin-Yu Tsai in the Department of Electrical Engineering and Computer Science, and is being reported in a paper published in the April 10 issue of Science.

Remarkably, the new technique, which the researchers call absorbance modulation, makes it possible to create lines that are only about one-tenth as wide as the wavelength of light used to create them. Part of the trick was to find a suitable photochromic material whose clear and opaque parts would remain stable after the initial exposure to light.

Using this method, the team produced lines just 36 nanometers wide, and say they could also place many such lines spaced a similar distance apart.

Such a technique "could have a significant impact on chip making," Menon says, and could also help to enable new work in a variety of emerging fields that rely on nano-scale patterning, including nanophotonics, nanofluidics, nanoelectronics, and nano-biological systems.

Already, a company has been formed to develop this technology, and Menon says he expects it to lead to commercial production within five years.

But that's not the only potential application of the approach. Menon says his team is pursuing possible use of the same system for imaging systems, which could enable new kinds of microscopes for observing at nanoscale resolution, with possible applications in biology and in materials science. At the same time, he is pursuing ways of using the technique to create even smaller patterns, down to the scale of individual molecules.

The work was partly funded by grants from LumArray Inc., where Menon is co-founder, the MIT Deshpande Center for Technological Innovation, and DARPA.

####

About MIT
The mission of MIT is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the 21st century.

For more information, please click here

Contacts:
Elizabeth A. Thomson
MIT News Office
Phone: 617-258-5402
E-mail:

Copyright © MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Physicists solve quantum tunneling mystery: ANU media release: An international team of scientists studying ultrafast physics have solved a mystery of quantum mechanics, and found that quantum tunneling is an instantaneous process May 27th, 2015

Nanotechnology identifies brain tumor types through MRI 'virtual biopsy' in animal studies: If results are confirmed in humans, tumor cells could someday be diagnosed by MRI imaging and treated with tumor-specific IV injections; new NIH grant will fund future study May 27th, 2015

Who needs water to assemble DNA? Non-aqueous solvent supports DNA nanotechnology May 27th, 2015

Controlled Release of Anticorrosive Materials in Spot by Nanocarriers May 27th, 2015

Possible Futures

Global Nano-Enabled Packaging Market For Food and Beverages Will Reach $15.0 billion in 2020 May 26th, 2015

Simulations predict flat liquid May 21st, 2015

Nature inspires first artificial molecular pump: Simple design mimics pumping mechanism of life-sustaining proteins found in living cells May 19th, 2015

NNCO and Museum of Science Fiction to Collaborate on Nanotechnology and 3D Printing Panels at Awesome Con May 19th, 2015

Chip Technology

Advance in quantum error correction: Protocol corrects virtually all errors in quantum memory, but requires little measure of quantum states May 27th, 2015

Technology for Tomorrow’s Market Opportunities and Challenges: LetiDays Grenoble Presents the Possibilities: June 24-25 Event Includes Focus on IoT-Augmented Mobility and Leti’s Latest Results on Silicon Technologies, Sensors, Health Applications and Smart Cities May 27th, 2015

Physicists solve quantum tunneling mystery: ANU media release: An international team of scientists studying ultrafast physics have solved a mystery of quantum mechanics, and found that quantum tunneling is an instantaneous process May 27th, 2015

Who needs water to assemble DNA? Non-aqueous solvent supports DNA nanotechnology May 27th, 2015

Nanomedicine

New electronic stent could provide feedback and therapy — then dissolve May 27th, 2015

Arrowhead to Present at Jefferies 2015 Healthcare Conference May 27th, 2015

Seeing the action: UCSB researchers develop a novel device to image the minute forces and actions involved in cell membrane hemifusion May 27th, 2015

Nanotechnology identifies brain tumor types through MRI 'virtual biopsy' in animal studies: If results are confirmed in humans, tumor cells could someday be diagnosed by MRI imaging and treated with tumor-specific IV injections; new NIH grant will fund future study May 27th, 2015

Nanoelectronics

Technology for Tomorrow’s Market Opportunities and Challenges: LetiDays Grenoble Presents the Possibilities: June 24-25 Event Includes Focus on IoT-Augmented Mobility and Leti’s Latest Results on Silicon Technologies, Sensors, Health Applications and Smart Cities May 27th, 2015

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Discoveries

Advance in quantum error correction: Protocol corrects virtually all errors in quantum memory, but requires little measure of quantum states May 27th, 2015

New electronic stent could provide feedback and therapy — then dissolve May 27th, 2015

Seeing the action: UCSB researchers develop a novel device to image the minute forces and actions involved in cell membrane hemifusion May 27th, 2015

Physicists solve quantum tunneling mystery: ANU media release: An international team of scientists studying ultrafast physics have solved a mystery of quantum mechanics, and found that quantum tunneling is an instantaneous process May 27th, 2015

Announcements

Physicists solve quantum tunneling mystery: ANU media release: An international team of scientists studying ultrafast physics have solved a mystery of quantum mechanics, and found that quantum tunneling is an instantaneous process May 27th, 2015

Nanotechnology identifies brain tumor types through MRI 'virtual biopsy' in animal studies: If results are confirmed in humans, tumor cells could someday be diagnosed by MRI imaging and treated with tumor-specific IV injections; new NIH grant will fund future study May 27th, 2015

Who needs water to assemble DNA? Non-aqueous solvent supports DNA nanotechnology May 27th, 2015

Controlled Release of Anticorrosive Materials in Spot by Nanocarriers May 27th, 2015

Nanobiotechnology

Seeing the action: UCSB researchers develop a novel device to image the minute forces and actions involved in cell membrane hemifusion May 27th, 2015

Nanotechnology identifies brain tumor types through MRI 'virtual biopsy' in animal studies: If results are confirmed in humans, tumor cells could someday be diagnosed by MRI imaging and treated with tumor-specific IV injections; new NIH grant will fund future study May 27th, 2015

Who needs water to assemble DNA? Non-aqueous solvent supports DNA nanotechnology May 27th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Photonics/Optics/Lasers

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Samtec, Global Provider of Interconnect Systems, Joins IRT Nanoelec Silicon Photonics Program May 21st, 2015

Taking control of light emission: Researchers find a way of tuning light waves by pairing 2 exotic 2-D materials May 20th, 2015

Printing/Lithography/Inkjet/Inks

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Printing 3-D graphene structures for tissue engineering: A new ink formulation allows for the 3-D printing of graphene structures May 19th, 2015

ORNL demonstrates first large-scale graphene fabrication May 14th, 2015

New JEOL E-Beam Lithography System to Enhance Quantum NanoFab Capabilities May 6th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project