Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > It's a fine line

Abstract:
New method could lead to narrower chip patterns

It's a fine line

Cambridge, MA | Posted on April 11th, 2009

David Chandler: Researchers at MIT have found a novel method for etching extremely narrow lines on a microchip, using a material that can be switched from transparent to opaque, and vice versa, just by exposing it to certain wavelengths of light.

Such materials are not new, but the researchers found a novel way of harnessing that property to create a mask with exceptionally fine lines of transparency. This mask can then be used to create a correspondingly fine line on the underlying material.

Producing such fine lines is crucial to many new technologies, from microchip manufacturing that is constantly seeking ways to cram more components onto a single chip, to a whole host of emerging fields based on nano-scale patterns. But these technologies have faced fundamental limits because they tend to rely on light to produce these patterns, and most techniques cannot produce patterns much smaller than the wavelengths of light itself. This method is a way of overcoming that limit.

The key is using interference patterns, in which different wavelengths of light sometimes reinforce each other and in other places cancel each other out. The researchers exposed the photochromic material -- one that changes its color, and therefore its transparency, in response to light -- to a pair of such patterns, each of a different wavelength, simultaneously. When the bright lines at one wavelength coincide with the dark lines at the other wavelength, extremely narrow lines of clear material are formed interspersed with the opaque material. This banded layer then serves as a mask through which the first wavelength illuminates a layer of material underneath, similarly to the way a photographic negative is used to make a print by shining light through it onto a sheet of photo paper underneath.

The research was carried out by research engineer Rajesh Menon of the Research Laboratory of Electronics and graduate students Trisha Andrew in the Department of Chemistry and Hsin-Yu Tsai in the Department of Electrical Engineering and Computer Science, and is being reported in a paper published in the April 10 issue of Science.

Remarkably, the new technique, which the researchers call absorbance modulation, makes it possible to create lines that are only about one-tenth as wide as the wavelength of light used to create them. Part of the trick was to find a suitable photochromic material whose clear and opaque parts would remain stable after the initial exposure to light.

Using this method, the team produced lines just 36 nanometers wide, and say they could also place many such lines spaced a similar distance apart.

Such a technique "could have a significant impact on chip making," Menon says, and could also help to enable new work in a variety of emerging fields that rely on nano-scale patterning, including nanophotonics, nanofluidics, nanoelectronics, and nano-biological systems.

Already, a company has been formed to develop this technology, and Menon says he expects it to lead to commercial production within five years.

But that's not the only potential application of the approach. Menon says his team is pursuing possible use of the same system for imaging systems, which could enable new kinds of microscopes for observing at nanoscale resolution, with possible applications in biology and in materials science. At the same time, he is pursuing ways of using the technique to create even smaller patterns, down to the scale of individual molecules.

The work was partly funded by grants from LumArray Inc., where Menon is co-founder, the MIT Deshpande Center for Technological Innovation, and DARPA.

####

About MIT
The mission of MIT is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the 21st century.

For more information, please click here

Contacts:
Elizabeth A. Thomson
MIT News Office
Phone: 617-258-5402
E-mail:

Copyright © MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Rutgers, NIST physicists report technology with potential for sub-micron optical switches March 31st, 2015

Prototype 'nanoneedles' generate new blood vessels in mice: Scientists have developed tiny 'nanoneedles' that have successfully prompted parts of the body to generate new blood vessels, in a trial in mice March 31st, 2015

Super sensitive measurement of magnetic fields March 31st, 2015

Nanomedicine pioneer Mauro Ferrari at ETH Zurich March 31st, 2015

Possible Futures

Nanotechnology in Medical Devices Market is expected to reach $8.5 Billion by 2019 March 25th, 2015

Nanotechnology Enabled Drug Delivery to Influence Future Diagnosis and Treatments of Diseases March 21st, 2015

Nanocomposites Market Growth, Industry Outlook To 2020 by Grand View Research, Inc. March 21st, 2015

Nanotechnology Drug Delivery Market in the US 2012-2016 : Latest Report Available by Radiant Insights, Inc March 16th, 2015

Chip Technology

Rutgers, NIST physicists report technology with potential for sub-micron optical switches March 31st, 2015

Next important step toward quantum computer: Scientists at the University of Bonn have succeeded in linking 2 different quantum systems March 30th, 2015

State-of-the-art online system unveiled to pinpoint metrology software accuracy March 27th, 2015

SUNY POLY CNSE to Host First Ever Northeast Semi Supply Conference (NESCO) Conference Will Connect New and Emerging Innovators in the Northeastern US and Canada with Industry Leaders and Strategic Investors to Discuss Future Growth Opportunities in NYS March 25th, 2015

Nanomedicine

Prototype 'nanoneedles' generate new blood vessels in mice: Scientists have developed tiny 'nanoneedles' that have successfully prompted parts of the body to generate new blood vessels, in a trial in mice March 31st, 2015

Nanomedicine pioneer Mauro Ferrari at ETH Zurich March 31st, 2015

Princess Margaret scientists convert microbubbles to nanoparticles: Harnessing light to advance tumor imaging, provide platform for targeted treatment March 30th, 2015

Wrapping carbon nanotubes in polymers enhances their performance: Scientists at Japan's Kyushu University say polymer-wrapped carbon nanotubes hold much promise in biotechnology and energy applications March 30th, 2015

Nanoelectronics

Rutgers, NIST physicists report technology with potential for sub-micron optical switches March 31st, 2015

SUNY POLY CNSE to Host First Ever Northeast Semi Supply Conference (NESCO) Conference Will Connect New and Emerging Innovators in the Northeastern US and Canada with Industry Leaders and Strategic Investors to Discuss Future Growth Opportunities in NYS March 25th, 2015

UW scientists build a nanolaser using a single atomic sheet March 24th, 2015

Iranian Researchers Present Model to Determine Dynamic Behavior of Nanostructures March 24th, 2015

Discoveries

Rutgers, NIST physicists report technology with potential for sub-micron optical switches March 31st, 2015

Prototype 'nanoneedles' generate new blood vessels in mice: Scientists have developed tiny 'nanoneedles' that have successfully prompted parts of the body to generate new blood vessels, in a trial in mice March 31st, 2015

Super sensitive measurement of magnetic fields March 31st, 2015

From tobacco to cyberwood March 31st, 2015

Announcements

Rutgers, NIST physicists report technology with potential for sub-micron optical switches March 31st, 2015

Prototype 'nanoneedles' generate new blood vessels in mice: Scientists have developed tiny 'nanoneedles' that have successfully prompted parts of the body to generate new blood vessels, in a trial in mice March 31st, 2015

Super sensitive measurement of magnetic fields March 31st, 2015

Nanomedicine pioneer Mauro Ferrari at ETH Zurich March 31st, 2015

Nanobiotechnology

From tobacco to cyberwood March 31st, 2015

Wrapping carbon nanotubes in polymers enhances their performance: Scientists at Japan's Kyushu University say polymer-wrapped carbon nanotubes hold much promise in biotechnology and energy applications March 30th, 2015

'Atomic chicken-wire' is key to faster DNA sequencing March 30th, 2015

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Photonics/Optics/Lasers

Rutgers, NIST physicists report technology with potential for sub-micron optical switches March 31st, 2015

Super sensitive measurement of magnetic fields March 31st, 2015

Next important step toward quantum computer: Scientists at the University of Bonn have succeeded in linking 2 different quantum systems March 30th, 2015

Solving molybdenum disulfide's 'thin' problem: Research team increases material's light emission by twelve times March 29th, 2015

Printing/Lithography/Inkjet/Inks

Haydale Announce Dedicated Graphene Inks Manufacturing Capability March 25th, 2015

NC State researchers create 'nanofiber gusher': Report method of fabricating larger amounts of nanofibers in liquid March 19th, 2015

'Additive manufacturing' could greatly improve diabetes management March 17th, 2015

Advantest to Exhibit at SEMICON China in Shanghai, China, March 17-19: Showcasing Broad Portfolio of Semiconductor Products, Technologies and Solutions March 10th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE