Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > It's a fine line

Abstract:
New method could lead to narrower chip patterns

It's a fine line

Cambridge, MA | Posted on April 11th, 2009

David Chandler: Researchers at MIT have found a novel method for etching extremely narrow lines on a microchip, using a material that can be switched from transparent to opaque, and vice versa, just by exposing it to certain wavelengths of light.

Such materials are not new, but the researchers found a novel way of harnessing that property to create a mask with exceptionally fine lines of transparency. This mask can then be used to create a correspondingly fine line on the underlying material.

Producing such fine lines is crucial to many new technologies, from microchip manufacturing that is constantly seeking ways to cram more components onto a single chip, to a whole host of emerging fields based on nano-scale patterns. But these technologies have faced fundamental limits because they tend to rely on light to produce these patterns, and most techniques cannot produce patterns much smaller than the wavelengths of light itself. This method is a way of overcoming that limit.

The key is using interference patterns, in which different wavelengths of light sometimes reinforce each other and in other places cancel each other out. The researchers exposed the photochromic material -- one that changes its color, and therefore its transparency, in response to light -- to a pair of such patterns, each of a different wavelength, simultaneously. When the bright lines at one wavelength coincide with the dark lines at the other wavelength, extremely narrow lines of clear material are formed interspersed with the opaque material. This banded layer then serves as a mask through which the first wavelength illuminates a layer of material underneath, similarly to the way a photographic negative is used to make a print by shining light through it onto a sheet of photo paper underneath.

The research was carried out by research engineer Rajesh Menon of the Research Laboratory of Electronics and graduate students Trisha Andrew in the Department of Chemistry and Hsin-Yu Tsai in the Department of Electrical Engineering and Computer Science, and is being reported in a paper published in the April 10 issue of Science.

Remarkably, the new technique, which the researchers call absorbance modulation, makes it possible to create lines that are only about one-tenth as wide as the wavelength of light used to create them. Part of the trick was to find a suitable photochromic material whose clear and opaque parts would remain stable after the initial exposure to light.

Using this method, the team produced lines just 36 nanometers wide, and say they could also place many such lines spaced a similar distance apart.

Such a technique "could have a significant impact on chip making," Menon says, and could also help to enable new work in a variety of emerging fields that rely on nano-scale patterning, including nanophotonics, nanofluidics, nanoelectronics, and nano-biological systems.

Already, a company has been formed to develop this technology, and Menon says he expects it to lead to commercial production within five years.

But that's not the only potential application of the approach. Menon says his team is pursuing possible use of the same system for imaging systems, which could enable new kinds of microscopes for observing at nanoscale resolution, with possible applications in biology and in materials science. At the same time, he is pursuing ways of using the technique to create even smaller patterns, down to the scale of individual molecules.

The work was partly funded by grants from LumArray Inc., where Menon is co-founder, the MIT Deshpande Center for Technological Innovation, and DARPA.

####

About MIT
The mission of MIT is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the 21st century.

For more information, please click here

Contacts:
Elizabeth A. Thomson
MIT News Office
Phone: 617-258-5402
E-mail:

Copyright © MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers use DNA 'clews' to shuttle CRISPR-Cas9 gene-editing tool into cells August 30th, 2015

Draw out of the predicted interatomic force August 30th, 2015

Iranian Scientists Use Artemisia Annua Plant to Produce Breast Cancer Drugs August 29th, 2015

A new technique to make drugs more soluble August 28th, 2015

Possible Futures

Sediment dwelling creatures at risk from nanoparticles in common household products August 13th, 2015

Harris & Harris Group Reports Financial Statements as of June 30, 2015, and Announces a Stock Repurchase Program August 10th, 2015

Molecular trick alters rules of attraction for non-magnetic metals August 5th, 2015

Global Carbon Nanotubes Industry 2015: Acute Market Reports August 4th, 2015

Chip Technology

Nanometrics to Participate in the Citi 2015 Global Technology Conference August 26th, 2015

Kwansei Gakuin University in Hyogo, Japan, uses Raman microscopy to study crystallographic defects in silicon carbide wafers August 25th, 2015

A little light interaction leaves quantum physicists beaming August 25th, 2015

'Magic' sphere for information transfer: Professor at the Lomonosov Moscow State University made the «magic» sphere for information transfer August 24th, 2015

Nanomedicine

Researchers use DNA 'clews' to shuttle CRISPR-Cas9 gene-editing tool into cells August 30th, 2015

Iranian Scientists Use Artemisia Annua Plant to Produce Breast Cancer Drugs August 29th, 2015

Small but heading for the big time: Nanobiotix half year results for the six months ended 30 June 2015, in line with expectations: Major clinical achievements and corporate developments August 28th, 2015

A new technique to make drugs more soluble August 28th, 2015

Nanoelectronics

Nanotechnology that will impact the Security & Defense sectors to be discussed at NanoSD2015 conference August 25th, 2015

'Quantum dot' technology may help light the future August 19th, 2015

Surprising discoveries about 2-D molybdenum disulfide: Berkeley Lab researchers use award-winning campanile probe on promising semiconductor August 15th, 2015

Better together: Graphene-nanotube hybrid switches August 3rd, 2015

Discoveries

Researchers use DNA 'clews' to shuttle CRISPR-Cas9 gene-editing tool into cells August 30th, 2015

Draw out of the predicted interatomic force August 30th, 2015

Iranian Scientists Use Artemisia Annua Plant to Produce Breast Cancer Drugs August 29th, 2015

A new technique to make drugs more soluble August 28th, 2015

Announcements

Researchers use DNA 'clews' to shuttle CRISPR-Cas9 gene-editing tool into cells August 30th, 2015

Draw out of the predicted interatomic force August 30th, 2015

Iranian Scientists Use Artemisia Annua Plant to Produce Breast Cancer Drugs August 29th, 2015

A new technique to make drugs more soluble August 28th, 2015

Nanobiotechnology

Researchers use DNA 'clews' to shuttle CRISPR-Cas9 gene-editing tool into cells August 30th, 2015

Small but heading for the big time: Nanobiotix half year results for the six months ended 30 June 2015, in line with expectations: Major clinical achievements and corporate developments August 28th, 2015

Nanotechnology that will impact the Security & Defense sectors to be discussed at NanoSD2015 conference August 25th, 2015

Louisiana Tech University researchers discover synthesis of a new nanomaterial: Interdisciplinary team creates biocomposite for first time using physiological conditions August 24th, 2015

Photonics/Optics/Lasers

Glitter from silver lights up Alzheimer's dark secrets August 25th, 2015

Quantum diffraction at a breath of nothing: Physicists build stable diffraction structure in atomically thin graphene August 25th, 2015

Nanotechnology that will impact the Security & Defense sectors to be discussed at NanoSD2015 conference August 25th, 2015

A little light interaction leaves quantum physicists beaming August 25th, 2015

Printing/Lithography/Inkjet/Inks

These microscopic fish are 3-D-printed to do more than swim: Researchers demonstrate a novel method to build microscopic robots with complex shapes and functionalities August 26th, 2015

New research may enhance display & LED lighting technology: Large-area integration of quantum dots and photonic crystals produce brighter and more efficient light August 9th, 2015

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

2015 Bulk Graphene Pricing Webinar:The Graphene Council to Host Webinar in Collaboration with Fullerex July 15th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic