Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Carbon nanotube polymer nanocomposites for field emission cathodes

Abstract:
A collaboration between researchers at the University of Surrey's Advanced Technology Institute (ATI) and the School of Physics at Trinity College Dublin have discovered that you can produce a composite of carbon nanotubes embedded in a polymer that gives outstanding performance as an electron emitter material.

Carbon nanotube polymer nanocomposites for field emission cathodes

Guildford, England, UK | Posted on April 9th, 2009

Under high voltage these electrons strike a phosphor screen producing the familiar colours of red, green and blue and opens up the possibility of highly efficient large area field emission displays as well as possible uses as low power back lighting units in LCD televisions.

Carbon nanotubes are rolled up sheets of carbon atoms a few billionths of a meter in diameter and the results of this study, recently reported in the journal Small, show that by adding just 1% carbon nanotubes embedded in a water soluble polymer gives the same performance as one with around 10%. By controlling the concentration of nanotubes, efficient emission of electrons from the composite surface is possible with negligible material wastage. By tailoring the correct choice of polymer and the chemical treatment of the nanotubes opens up the possibility of large area carbon nanotube based electronics, including transparent electronics on plastic.

Dr David Carey, who led the Surrey research group, said: "Our successful exploitation of carbon nanotube based electronics for display technology demonstrates the importance of multidisciplinary collaborative research. The work at Surrey and Dublin shows how making changes on the nanoscale can affect a material's properties over a much larger scale and can lead to their exploitation in large area electronics."

Professor Ravi Silva, Director of the Advanced Technology Institute commented: "This type of high quality research which brings nanoscience through to engineering is what could lead to many practical applications that require high intensity electron field emission sources. The ATI at Surrey has significant expertise in this field and is leading the way in the application of carbon nanotubes."

For further information please see ‘Carbon Nanotube Polymer Nanocomposites for Field Emission Cathodes' by Thomas Connolly, Richard C. Smith, Yenny Hernandez, Yurii Gun'ko, Jonathan N. Coleman, and J. David Carey, Small, volume 5, pages 826 - 831 (2009).

Further details can be found at dx.doi.org/10.1002/smll.200801094

####

About University of Surrey
We are a global university with a world-class research profile and an enterprising spirit. Inventive and forward-thinking, our heritage shows a recurring theme of going our own way, doing things differently – and achieving notable results.

Show less
We provide a distinctive blend of academic knowledge, professional insight, and can-do confidence to those studying and working with us. Staff/student exchanges and research collaboration are developed through our landmark partnerships with Massachusetts Institute of Technology, California Institute of Technology, the University of California, Los Angeles and North Carolina State University. In only the second collaboration of its kind to be approved by the Chinese government, the Surrey International Institute offers joint undergraduate degrees with Dongbei University of Finance and Economics in China, giving UK students the opportunity to study at the Dongbei campus and vice-versa.

For more information, please click here

Contacts:
Press Enquiries
Peter La, Press Officer
Tel. +44 (0)1483 689191

Copyright © University of Surrey

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Leti to Demo 1st Wireless UNB Transceiver for ‘Massive Internet of Things’ at RFIC 2017 and IMS 2017: Leti Will also Present Three Papers & Two Workshops on 5G Communications IC Design, from RF to mm-Wave, During IMS 2017 and RFIC 2017 in Hawaii May 24th, 2017

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Possible Futures

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Leti Will Demo World’s-first WVGA 10-µm Pitch GaN Microdisplays for Augmented Reality Video at Display Week in Los Angles: Invited Paper also Will Present Leti’s Success with New Augmented Reality Technology That Reduces Pixel Pitch to Less than 5 Microns May 22nd, 2017

Nanotubes/Buckyballs/Fullerenes

Fed grant backs nanofiber development: Rice University joins Department of Energy 'Next Generation Machines' initiative May 10th, 2017

Nanotubes that build themselves April 14th, 2017

Intertronics introduce new nanoparticle deagglomeration technology March 15th, 2017

Boron atoms stretch out, gain new powers: Rice University simulations demonstrate 1-D material's stiffness, electrical versatility January 26th, 2017

Nanoelectronics

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

Racyics Launches ‘makeChip’ Design Service Platform for GLOBALFOUNDRIES’ 22FDX® Technology: Racyics will provide IP and design services as a part of the foundry’s FDXcelerator™ Partner Program May 11th, 2017

Researchers “iron out” graphene’s wrinkles: New technique produces highly conductive graphene wafers April 3rd, 2017

A big leap toward tinier lines: Self-assembly technique could lead to long-awaited, simple method for making smaller microchip patterns March 27th, 2017

Discoveries

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Announcements

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Leti to Demo 1st Wireless UNB Transceiver for ‘Massive Internet of Things’ at RFIC 2017 and IMS 2017: Leti Will also Present Three Papers & Two Workshops on 5G Communications IC Design, from RF to mm-Wave, During IMS 2017 and RFIC 2017 in Hawaii May 24th, 2017

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project