Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > RUB Physicists get into a SPIN again

Torkeln der Elektronenspins
 
The diagrams show how the spin wavers (oscillation shown at top) in relation to time following an alignment laser pulse. One oscillation period corresponds to one complete waver rotation. As anticipated, the strength (amplitude) of all red curves decreases with time. After 1.2 nanoseconds (ns) a laser control pulse is irradiated to suddenly change the alignment of the spin, indicated by the phase of blue and finally green curves: It is precisely the counter-phase to the black curve at the bottom, recorded without control pulse. Moreover this waver builds up in the counter-phase at 2.4 ns, so that the signal is particularly high here, significantly facilitating readout.
Torkeln der Elektronenspins

The diagrams show how the spin wavers (oscillation shown at top) in relation to time following an alignment laser pulse. One oscillation period corresponds to one complete waver rotation. As anticipated, the strength (amplitude) of all red curves decreases with time. After 1.2 nanoseconds (ns) a laser control pulse is irradiated to suddenly change the alignment of the spin, indicated by the phase of blue and finally green curves: It is precisely the counter-phase to the black curve at the bottom, recorded without control pulse. Moreover this waver builds up in the counter-phase at 2.4 ns, so that the signal is particularly high here, significantly facilitating readout.

Abstract:
The intrinsic rotation of electrons - the "spin" - remains unused by modern electronics. If use as an information carrier were possible, the processing power of electronic components would suddenly increase to a multiple of the present capacity. In cooperation with colleagues from Dortmund, St. Petersburg and Washington, Bochum physicists have now succeeded in aligning electron spin, bringing it to a controlled "waver" and reading it out.

RUB Physicists get into a SPIN again

Bochum, Germany | Posted on March 30th, 2009

The electron spin can also be realigned as required at any time using optical pulses. "This is the first, important step toward addressing these "quantum bits", which will form an integral part of data transfer systems and processors in the future", exclaimed Prof. Andreas Wieck. The researchers have published their report in NATURE Physics.

Complex Calculations in Minimum Space

The entirety of present day electronics is based on electrical charges: If a memory cell (bit) has an electrical charge, it represents a logical "1", if no charge is present this is a logical "0". However electrons have more than just a charge - they spin like a top around their own axis, producing a magnetic field, similar to the earth. This spin can be accelerated or decelerated by applying an external magnetic field. The "top" begins to waver and its axis tips to virtually any desired angle. If these manifold possibilities were used as information carriers, it would be possible to store a great deal more information than just "0" and "1" with an electron. Moreover adjacent electrons could be moved into various configurations, because they exert forces on one another in the same manner as two magnets on a bulletin board. This phenomenon would provide a significantly more complex base for data storage and processing. Even a small quantity of these so-call quantum bits (qubits), would allow extremely complex calculations, for which millions of bits are required today.

Confinement of Spins in Indium-Arsenic Islands

Naturally one single electron has only a very small measureable effect. For this reason individual electron measurements can only be performed with great difficulty using highly sensitive instruments. This is why the international research team has specialized in confining nearly one million electrons each in virtually identical indium-arsenic islands ("quantum dots") and totaling their effect. These "ensemble" measurements provide signals which are stronger by a magnitude of six, making them very sturdy and allowing them to be recorded easily. "Contrary to the preconceptions of many international competitors, all associated electron spins exhibit precisely the same behavior and the microscopic effects can therefore be measured very easily" stated Wieck.

Optical Switching of Quantum Dots

In the study published in "NATURE" the physicists were not only successful in aligning the electron spin; they also managed to rotate it optically using a laser pulse in any desired direction at any time and read this direction out with a further laser pulse. This is the first important step towards "addressing" and influencing qubits. "The interesting factor here is that these electrons are enclosed in solid bodies, so we no longer need complex high vacuum equipment and light occlusion on all sides to keep them permanently in a module as in quantum optics " stressed Prof. Wieck. In Bochum the extremely high vacuum is required only once during production of the quantum dot; after that the semiconductor system is sealed against air ingress, has a long service life and is just as reliable as all transistors and memory cells already in use today.

####

About Ruhr University in Bochum
From local best to international research excellence: The Ruhr-Universität Bochum (RUB) has character and charm; and its people make the campus a living and unique place. Discover a university with a profile, with interesting people, a one-off campus, and impressive numbers and facts.

Contacts:
Prof. Dr. Andreas Wieck
Chair for Applied Solid State Physics at the Ruhr University in Bochum
Tel.: 0234/32-28786

Copyright © Ruhr University in Bochum

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

JPK reports on the exciting research in the School of Medicine at Sungkyunkwan University (SKKU), Suwon, South Korea using the NanoWizard® ULTRA Speed AFM to understand the binding of transcription factor Sox2 with super enhancers November 23rd, 2017

Precision NanoSystems to host nanomedicines roundtable November 23rd, 2017

Fine felted nanotubes : Research team of Kiel University develops new composite material made of carbon nanotubes November 22nd, 2017

Report highlights opportunities and risks associated with synthetic biology and bioengineering November 22nd, 2017

Possible Futures

Fine felted nanotubes : Research team of Kiel University develops new composite material made of carbon nanotubes November 22nd, 2017

Report highlights opportunities and risks associated with synthetic biology and bioengineering November 22nd, 2017

Quantum optics allows us to abandon expensive lasers in spectroscopy: Lomonosov Moscow State University scientists have invented a new method of spectroscopy November 21st, 2017

Nano-watch has steady hands November 21st, 2017

Spintronics

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Rice U. lab surprised by ultraflat magnets: Researchers create atom-thick alloys with unanticipated magnetic properties October 13th, 2017

A Sea of Spinning Electrons: Rutgers-led discovery could spawn a wave of new electronic devices October 2nd, 2017

Quantum Computing

Quantum optics allows us to abandon expensive lasers in spectroscopy: Lomonosov Moscow State University scientists have invented a new method of spectroscopy November 21st, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Quantum manipulation power for quantum information processing gets a boost: Improving the efficiency of quantum heat engines involves reducing the number of photons in a cavity, ultimately impacting quantum manipulation power October 14th, 2017

Quantum communications bend to our needs: By changing the wavelengths of entangled photons to those used in telecommunications, researchers see quantum technology take a major leap forward September 28th, 2017

Nanoelectronics

GLOBALFOUNDRIES, Fudan Team to Deliver Next Generation Dual Interface Smart Card November 14th, 2017

Leti Will Present 11 Papers and Host More-than-Moore Technologies Workshop November 14th, 2017

The next generation of power electronics? Gallium nitride doped with beryllium: How to cut down energy loss in power electronics? The right kind of doping November 9th, 2017

Researchers bring optical communication onto silicon chips: Ultrathin films of a semiconductor that emits and detects light can be stacked on top of silicon wafers October 23rd, 2017

Quantum nanoscience

Quantum optics allows us to abandon expensive lasers in spectroscopy: Lomonosov Moscow State University scientists have invented a new method of spectroscopy November 21st, 2017

'Find the Lady' in the quantum world: International team of researchers presents method for quantum-mechanical swapping of positions October 18th, 2017

What can be discovered at the junction of physics and chemistry October 6th, 2017

Energy against the current on a quantum scale, without contradicting the laws of physics: A piece of research in which the UPV/EHU-University of the Basque Country has participated confirms that merely observing a flow of energy or particles can change its direction October 6th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project