Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > RUB Physicists get into a SPIN again

Torkeln der Elektronenspins
 
The diagrams show how the spin wavers (oscillation shown at top) in relation to time following an alignment laser pulse. One oscillation period corresponds to one complete waver rotation. As anticipated, the strength (amplitude) of all red curves decreases with time. After 1.2 nanoseconds (ns) a laser control pulse is irradiated to suddenly change the alignment of the spin, indicated by the phase of blue and finally green curves: It is precisely the counter-phase to the black curve at the bottom, recorded without control pulse. Moreover this waver builds up in the counter-phase at 2.4 ns, so that the signal is particularly high here, significantly facilitating readout.
Torkeln der Elektronenspins

The diagrams show how the spin wavers (oscillation shown at top) in relation to time following an alignment laser pulse. One oscillation period corresponds to one complete waver rotation. As anticipated, the strength (amplitude) of all red curves decreases with time. After 1.2 nanoseconds (ns) a laser control pulse is irradiated to suddenly change the alignment of the spin, indicated by the phase of blue and finally green curves: It is precisely the counter-phase to the black curve at the bottom, recorded without control pulse. Moreover this waver builds up in the counter-phase at 2.4 ns, so that the signal is particularly high here, significantly facilitating readout.

Abstract:
The intrinsic rotation of electrons - the "spin" - remains unused by modern electronics. If use as an information carrier were possible, the processing power of electronic components would suddenly increase to a multiple of the present capacity. In cooperation with colleagues from Dortmund, St. Petersburg and Washington, Bochum physicists have now succeeded in aligning electron spin, bringing it to a controlled "waver" and reading it out.

RUB Physicists get into a SPIN again

Bochum, Germany | Posted on March 30th, 2009

The electron spin can also be realigned as required at any time using optical pulses. "This is the first, important step toward addressing these "quantum bits", which will form an integral part of data transfer systems and processors in the future", exclaimed Prof. Andreas Wieck. The researchers have published their report in NATURE Physics.

Complex Calculations in Minimum Space

The entirety of present day electronics is based on electrical charges: If a memory cell (bit) has an electrical charge, it represents a logical "1", if no charge is present this is a logical "0". However electrons have more than just a charge - they spin like a top around their own axis, producing a magnetic field, similar to the earth. This spin can be accelerated or decelerated by applying an external magnetic field. The "top" begins to waver and its axis tips to virtually any desired angle. If these manifold possibilities were used as information carriers, it would be possible to store a great deal more information than just "0" and "1" with an electron. Moreover adjacent electrons could be moved into various configurations, because they exert forces on one another in the same manner as two magnets on a bulletin board. This phenomenon would provide a significantly more complex base for data storage and processing. Even a small quantity of these so-call quantum bits (qubits), would allow extremely complex calculations, for which millions of bits are required today.

Confinement of Spins in Indium-Arsenic Islands

Naturally one single electron has only a very small measureable effect. For this reason individual electron measurements can only be performed with great difficulty using highly sensitive instruments. This is why the international research team has specialized in confining nearly one million electrons each in virtually identical indium-arsenic islands ("quantum dots") and totaling their effect. These "ensemble" measurements provide signals which are stronger by a magnitude of six, making them very sturdy and allowing them to be recorded easily. "Contrary to the preconceptions of many international competitors, all associated electron spins exhibit precisely the same behavior and the microscopic effects can therefore be measured very easily" stated Wieck.

Optical Switching of Quantum Dots

In the study published in "NATURE" the physicists were not only successful in aligning the electron spin; they also managed to rotate it optically using a laser pulse in any desired direction at any time and read this direction out with a further laser pulse. This is the first important step towards "addressing" and influencing qubits. "The interesting factor here is that these electrons are enclosed in solid bodies, so we no longer need complex high vacuum equipment and light occlusion on all sides to keep them permanently in a module as in quantum optics " stressed Prof. Wieck. In Bochum the extremely high vacuum is required only once during production of the quantum dot; after that the semiconductor system is sealed against air ingress, has a long service life and is just as reliable as all transistors and memory cells already in use today.

####

About Ruhr University in Bochum
From local best to international research excellence: The Ruhr-Universität Bochum (RUB) has character and charm; and its people make the campus a living and unique place. Discover a university with a profile, with interesting people, a one-off campus, and impressive numbers and facts.

Contacts:
Prof. Dr. Andreas Wieck
Chair for Applied Solid State Physics at the Ruhr University in Bochum
Tel.: 0234/32-28786

Copyright © Ruhr University in Bochum

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Pulses of electrons manipulate nanomagnets and store information: Scientists use electron pulses to create and manipulate nanoscale magnetic excitations that can store data July 21st, 2017

The first light atomic nucleus with a second face July 20th, 2017

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

Harnessing light to drive chemical reactions July 19th, 2017

Possible Futures

Pulses of electrons manipulate nanomagnets and store information: Scientists use electron pulses to create and manipulate nanoscale magnetic excitations that can store data July 21st, 2017

Probiotics: Novel biosynthetic tool to develop metallic nanoparticles: This research article by Dr. Nida Akhtar et al has been published in Recent Patents on Drug Delivery & Formulation, Volume 11, Issue 1, 2017 July 20th, 2017

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

Here's a tip: Indented cement shows unique properties: Rice University models reveal nanoindentation can benefit crystals in concrete July 20th, 2017

Spintronics

Smart multi-layered magnetic material acts as an electric switch: New study reveals characteristic of islands of magnetic metals between vacuum gaps, displaying tunnelling electric current March 1st, 2017

First experimental proof of a 70 year old physics theory: First observation of magnetic phase transition in 2-D materials, as predicted by the Nobel winner Onsager in 1943 January 6th, 2017

Investigations of the skyrmion Hall effect reveal surprising results: One step further towards the application of skyrmions in spintronic devices December 28th, 2016

Electron highway inside crystal December 12th, 2016

Quantum Computing

Into the quantum world with a tennis racket: Classical mechanics helps control quantum computers July 6th, 2017

Microsoft, Purdue collaborate to advance quantum computing May 30th, 2017

Looking for the quantum frontier: Beyond classical computing without fault-tolerance? April 27th, 2017

Harris & Harris Group Issues Its Financial Statements as of December 31, 2016, Posts Its Annual Shareholder Letter, And Will Host a Conference Call for Shareholders on Friday, March 17, 2017 March 15th, 2017

Nanoelectronics

Tokyo Institute of Technology research: Antiaromatic molecule displays record electrical conductance July 19th, 2017

A firefly's flash inspires new nanolaser light July 18th, 2017

GLOBALFOUNDRIES and VeriSilicon To Enable Single-Chip Solution for Next-Gen IoT Networks: Integrated solution leverages GF’s 22FDX® technology to decrease power, area, and cost for NB-IoT and LTE-M applications July 14th, 2017

Thinking thin brings new layering and thermal abilities to the semiconductor industry: In a breakthrough for the semiconductor industry, researchers demonstrate a new layer transfer technique called "controlled spalling" that creates many thin layers from a single gallium nitride July 11th, 2017

Quantum nanoscience

Carbon displays quantum effects July 13th, 2017

Physicists make quantum leap in understanding life's nanoscale machinery June 27th, 2017

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Oxford Instruments congratulates Lancaster University for inaugurating the IsoLab, built for studying quantum systems June 20th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project