Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nanoparticles in cosmetics/personal care products may have adverse environmental effects

Magnification of E. coli exposed to a low 
concentration (10 mg/L) of titanium dioxide
nanoparticles. Cells with compromised membranes
are stained red.
Credit: University of Toledo
Magnification of E. coli exposed to a low concentration (10 mg/L) of titanium dioxide nanoparticles. Cells with compromised membranes are stained red. Credit: University of Toledo

Abstract:
Using aquatic microbes as their "canary-in-a-cage," scientists from Ohio today reported that nanoparticles now being added to cosmetics, sunscreens, and hundreds of other personal care products may be harmful to the environment.

Their report was part of symposia that included almost two dozen papers at the 237th National Meeting of the American Chemical Society where scientists grappled to understand the environmental and human health effects of nanotechnology. Hundreds of products utilizing these microscopic particles — 1/5,000th the diameter of a human hair — already are on the market. With many more poised for debut, scientists are seeking to avoid unwanted health and environmental effects in advance.

Nanoparticles in cosmetics/personal care products may have adverse environmental effects

Salt Lake City, UT | Posted on March 27th, 2009

The study by Cyndee Gruden, Ph.D. and Olga Mileyeva-Biebesheimer focused on nano-titanium dioxide (nano-TiO2) particles found in cosmetics, sunscreens, and other personal care products. The particles are added to those products for their highly beneficial effects in blocking ultraviolet light in sunlight. Excess exposure can cause premature aging of the skin and skin cancer.

Gruden, who is with the University of Toledo, explained that the particles are washed down the drain in homes as people bathe and end up in municipal sewage treatment plants. From there, they can enter lakes, rivers, and other water sources where microorganisms serve essential roles in maintaining a healthy environment.

"When they enter a lake, what happens?" Gruden asked. "Would they enter an organism or bind to it? Maybe they kill it — or have nothing to do with it at all. These are important questions for determining the effects that nanoparticles may have on the environment. Right now, we're not really sure of the answers."

Gruden studied survival of Escherichia coli (E. coli) bacteria when exposed in laboratory cultures to various amounts of nano-TiO2. She found surprisingly large reductions in survival in samples exposed to small concentrations of the nanoparticles for less than an hour. "How fast the impact was surprised me," she said. The findings open the door to future research, including studies to determine whether the same effects occur in the natural environment.

Gruden's method for pinpointing damage from nanoparticles uses fluorescence to identify when the cell membrane in microbes undergo damage. When membranes — a crucial part of the microbe — are damaged, the cells emit a faint red glow. "Methods based upon fluorescence allow us to obtain results faster, maybe with greater sensitivity," she said, adding that this approach could speed scientific efforts to understand the threshold at which nanoparticles become toxic to microbes.

In a second study on nanotoxicity at the ACS National Meeting, scientists from Utah described development of a new biosensor that flashes like a beacon upon detecting nanoparticles in the environment.

Anne Anderson and colleagues at Utah State University and the University of Utah have inserted genes into a strain of Pseudomonas putida (P. putida) — a beneficial soil microbe — so that it emits light upon contact with nanoparticles of heavy metals. They are with Utah State University. The bacteria glow brightly when it is in its normal healthy state. The glow dims upon exposure to toxic substances.

"The novelty of the biosensor is we're able to get responses very, very quickly," she said, "and we can get those answers in the absence of other factors that could bind the challenging compounds." Anderson noted that traditional approaches in measuring bacterial cell growth may take two days. "At the snap of your finger you can see some of these things take place."

Anderson's group discovered that P. putida cannot tolerate silver, copper oxide and zinc oxide nanoparticles. Toxicity occurred at levels as low as micrograms per liter. That's equivalent to two or three drops of water in an Olympic-sized swimming pool. Anderson warns it could spell danger for aquatic life. "If you look up the Environmental Protection Agency's risk level of Copper to fish and other aquatic organisms, you are at that point of toxicity."

There's much debate in the science community about nanoparticle toxicity, Anderson said. Some scientists believe that nanoparticles in nature will aggregate together or bind onto silt and/or other organic matter, greatly reducing their toxicity. "We don't know if that's true or not," she said. So other members of this Utah research group currently are investigating that aspect of the issue.

Although the public is ultimately responsible for understanding the risks of consumer products, Gruden said, science plays a large role in highlighting possible hazards. "It is the scientist's job to perform good research and let the findings speak for themselves," she said. And so far the promises of nanotechnology need more evaluation. "To date, it's unclear whether the benefits of nanotech outweigh the risks associated with environmental release and exposure to nanoparticles."

####

About American Chemical Society
The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 154,000 members, ACS is the world’s largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

Contacts:
Michael Bernstein
801-534-4748
(Salt Lake City, March 21-25)
202-872-6042 (Washington, D.C.)


Michael Woods
801-534-4748
(Salt Lake City, March 21-25)
202-872-6293 (Washington, D.C.)

Copyright © American Chemical Society

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Preparing for Nano

How nanoscience will improve our health and lives in the coming years: Targeted medicine deliveries and increased energy efficiency are just two of many ways October 26th, 2016

Searching for a nanotech self-organizing principle May 1st, 2016

Nanotechnology is changing everything from medicine to self-healing buildings: Nanotechnology is so small it's measured in billionths of metres, and it is revolutionising every aspect of our lives April 2nd, 2016

Durnham University's DEEPEN project comes to a close September 26th, 2012

Sensors

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Tip-assisted chemistry enables chemical reactions at femtoliter scale November 16th, 2016

'Back to the Future' inspires solar nanotech-powered clothing November 15th, 2016

Announcements

A nano-roundabout for light December 10th, 2016

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Environment

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Semiconductor-free microelectronics are now possible, thanks to metamaterials November 9th, 2016

First time physicists observed and quantified tiny nanoparticle crossing lipid membrane November 7th, 2016

Nanosensors on the alert for terrorist threats: Scientists interested in the prospects of gas sensors based on binary metal oxide nanocomposites November 5th, 2016

Personal Care/Cosmetics

Programmable materials find strength in molecular repetition May 23rd, 2016

Common nanoparticle has subtle effects on oxidative stress genes May 11th, 2016

NRL reveals novel uniform coating process of p-ALD April 21st, 2016

New ORNL method could unleash solar power potential March 16th, 2016

Safety-Nanoparticles/Risk management

First time physicists observed and quantified tiny nanoparticle crossing lipid membrane November 7th, 2016

SUN shares its latest achievements during the 3rd Annual Project Meeting November 1st, 2016

The Sustainable Nanotechnologies Project’s Final Events: Bringing Nano Environmental Health and Safety Assessment to the Wider Discussion on Risk Governance of Key Enabling Technologies November 1st, 2016

Exploding smartphones: What's the silent danger lurking in our rechargeable devices? New research identifies toxic emissions released by lithium-ion batteries October 21st, 2016

Events/Classes

Arrowhead Pharmaceuticals to Webcast Fiscal 2016 Year End Results December 7th, 2016

In IEDM 2016 Keynote, Leti CEO Says ‘Hyperconnectivity’, Human-focused Research and the IOT Promise Profound, Positive Changes December 7th, 2016

IEDM: Leti CEO Marie Semeria to Give Opening-day Keynote on Impact of ‘Hyperconnectivity’ and IoT: Speech to Portray Key Role Nonprofit Research and Technology Organizations Play in Making Technology More Efficient and Ensuring Safety and Security November 29th, 2016

Leti and Grenoble Partners Demonstrate World’s 1st Qubit Device Fabricated in CMOS Process: Paper by Leti, Inac and University of Grenoble Alpes Published in Nature Communications November 28th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project