Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > MIND Research Center Poised to Meet Demands of Emerging Nanotechnology

Abstract:
The nanoelectronics industry has embarked on a quest for fundamental changes that will transform virtually everything it touches, according to Dr. Robert Doering, senior fellow and research strategy manager at Texas Instruments, one of the world's leading semiconductor companies.

MIND Research Center Poised to Meet Demands of Emerging Nanotechnology

Notre Dame, IN | Posted on March 20th, 2009

And the Midwest Institute for Nanoelectronics Discovery (MIND), headquartered at the University of Notre Dame, is uniquely positioned to serve as an essential catalyst in that transformation.

Picture the entire city of New York - including every person, animal, insect and plant, every graffiti scrawl on every building, every piece of litter tossed onto the sidewalk - encrypted with pinpoint accuracy and stored on a tiny piece of silicon roughly the size of a postage stamp.

As impossible as it may seem, the field of semiconductors has miniaturized to the level where integrated circuits ("chips") of similar complexity are used daily in such technologies as cell phones, GPS devices and automated medical defibrillators.

"We've scaled down the incumbent chip technology so far that we will soon need something fundamentally different," says Doering.

Scaling, the concept of producing ever-smaller components on integrated circuits, has driven IC technology for the past 50 years. The advantages of smaller components, including increased performance, more energy efficiency, lower costs, less space, expanded applications and larger markets, increase exponentially with each new level of scaling.

For a few more years, the existing technology can continue on its current trajectory, Doering said. However, sometime between 2015 and 2020, scaling of this technology will reach the point where it can go no further.

Thus, the search is on for a new way to make integrated circuits.

Speaking before a group of 155 key business leaders in South Bend, Doering outlined the scenario for the next monumental advance in semiconductor technology.

"What is the next transistor?" Doering asked the group gathered for the annual meeting of Project Future, which for 28 years has led economic development efforts in the South Bend area. "We have some interesting concepts, but we haven't been able to verify the practicality of them yet. We're hoping to be there within the next few years, and MIND will be a crucial part of that."

Researchers currently have several potential candidates under consideration. Depending on a number of variables, the successful technology could move in any of several directions.

"It's hard to predict the breakthroughs," Doering said. "We know some of the contenders, but we don't know which way they might go."

It is precisely that unpredictability that places MIND - one of four research centers funded by the Semiconductor Research Corp.'s Nanoelectronics Research Initiative -- in a uniquely strong position.

While the goal of all four NRI centers is to discover and develop the next nanoscale logic device, MIND is unique among the centers in its focus on two themes: energy-efficient devices and energy-efficient architectures.

"MIND is looking at overall efficiency and at overall evaluation of the new concepts against significant metrics," Doering said. "That puts South Bend on the map for funding. It also elevates the stature of Notre Dame in the university research community and rankings."

Doering's visit highlights the widespread recognition of the research that is taking place at Notre Dame, according to South Bend Mayor Stephen J. Luecke.

"It's a recognition of the partnership between the university and the city to move projects forward to commercialization," Luecke said, explaining that the city's commitment to support commercialization was a key factor in selecting the location for MIND.

"There is important work going on at MIND, and we're at the heart of it," Luecke said. "This focus on our community shows that we're moving in the right direction to create good opportunities."

Some of those opportunities might arise from working with early adapters, Luecke speculated - small companies that are very nimble and interested in research in a variety of venues. Such companies might not wait for the final big breakthrough, but are instead using individual elements now for existing or new products.

Doering's visit also highlights the area's preparedness to welcome the new technology as it emerges, according to Patrick McMahon, executive director of Project Future.

"Part of the reason we're very excited is that, as opposed to this being some intellectual property trying to find a home, the home is here," McMahon said. "It's here in the form of people who manufacture logic devices and the people who use them. The industry players are already identified for us, and our relationship with them is significant because of research occurring here."

The fact that the technology will find its way into so many different types of products, applications and industries adds even more significance to what is already developing in South Bend.

"This is one of the largest innovations in 150 years," McMahon said. "Its impact will be more far-reaching than the auto industry."

By 2015, the nanoelectronics field could reach the trillion-dollar range, according to the National Science Foundation.

####

About Business Wire
The Midwest Institute for Nanoelectronics Discovery (MIND) is one of four centers funded by the Semiconductor Research Corporation's Nanoelectronics Research Initiative (NRI).

MIND is based at the University of Notre Dame and includes related research conducted at Cornell University, Georgia Institute of Technology, Pennsylvania State University, Purdue University, University of Illinois, University of Michigan, and University of Texas-Dallas. Collaborations also link the National Institute of Standards and Technology, Argonne National Laboratory, and the National High Magnetic Field Laboratory.

Copyright © Business Wire

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Midwest Institute for Nanoelectronics Discovery

Related News Press

News and information

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Haydale Named Lead Sponsor for Cambridge Graphene Festival May 22nd, 2015

Simulations predict flat liquid May 21st, 2015

Possible Futures

Simulations predict flat liquid May 21st, 2015

Nature inspires first artificial molecular pump: Simple design mimics pumping mechanism of life-sustaining proteins found in living cells May 19th, 2015

NNCO and Museum of Science Fiction to Collaborate on Nanotechnology and 3D Printing Panels at Awesome Con May 19th, 2015

Quantum 'gruyères' for spintronics of the future: Topological insulators become a little less 'elusive' May 12th, 2015

Chip Technology

Nanometrics Announces Live Webcast of Upcoming Investor and Analyst Day May 20th, 2015

Sandia researchers first to measure thermoelectric behavior by 'Tinkertoy' materials May 20th, 2015

Defects can 'Hulk-up' materials: Berkeley lab study shows properly managed damage can boost material thermoelectric performances May 20th, 2015

GLOBALFOUNDRIES Offers New Low-Power 28nm Solution for High-Performance Mobile and IoT Applications: Technology is the first in the industry to provide design enablement support optimized to meet low power requirements of RF SoCs May 20th, 2015

Nanoelectronics

Random nanowire configurations increase conductivity over heavily ordered configurations May 16th, 2015

Channeling valleytronics in graphene: Berkeley Lab researchers discover 1-D conducting channels in bilayer graphene May 6th, 2015

A better way to build DNA scaffolds: McGill researchers devise new technique to produce long, custom-designed DNA strands May 6th, 2015

Surface matters: Huge reduction of heat conduction observed in flat silicon channels April 23rd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project