Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Spinning Carbon Nanotubes Spawns New Wireless Applications

Mast demonstrates the homemade dipole antenna.
Mast demonstrates the homemade dipole antenna.

Abstract:
Lighter, cheaper, safer a team of researchers at the University of Cincinnati, known for their world record-breaking carbon nanotubes, has discovered new applications of use to both military and consumer audiences.

Spinning Carbon Nanotubes Spawns New Wireless Applications

Cincinnati, OH | Posted on March 15th, 2009

The University of Cincinnati has long been known for its world-record-breaking carbon nanotubes. Now researchers at the University of Cincinnati have discovered new uses by spinning carbon nanotubes (CNTs) into longer fibers with additional useful properties.

Taking technology that has already been proven to grow carbon nanotubes of world-record breaking lengths, researchers Vesselin Shanov, Mark Schulz and Chaminda Jayasinghe in the UC College of Engineering NanoWorld Lab have now found new applications by spinning these fibers into strong threads.

David Mast, from UC's McMicken College of Arts and Sciences, saw possibilities in the threads. Mast, an associate professor of physics, took a 25-micron carbon nanotube thread and created a dipole antenna using double-sided transparent tape and silver paste. He was immediately successful in transmitting radio signals.

"It transmitted almost as well as the copper did, but at about one ten-thousandth of the weight," says Mast.

Mast was able to transmit both AM and FM in his lab, broadcasting a local NPR station.

"Then I decided to dismantle my cell phone," says Mast. He created a cell phone antenna, using CNT thread and tape. Ripping the back off his own cell phone, he tore out the phone's original antenna and replaced it with his home-made one. With the "nano-antenna" or "nantenna," he was able to get four to five "bars" of service, compared to none when he removed it.

"That was a very pleasant surprise, how easy it was to do," Mast says. "The hardest thing is to manipulate them. They float on ambient air."

From there it was an easy leap to video, in which he was again successful. "I want to now set up a wireless webcam for the lab using these thread antennas so that others can see how well they work."

Mast says that the key to the new applications is the quality of the material that Schulz and Shanov came up with using multi-wall carbon nanotubes.

"They spin thread that is of such high quality, it opens the door to incredible possibilities," says Mast. "This is just one of many potential applications."

Schulz explains that the carbon nanotube threads work well as an antenna because of something called the "skin effect."

"The electrons transfer well because they want to go to the surface," he says. "Instead of traveling through a bulk mass, they are traveling across a skin."

"Copper wire is a bulk material," Shanov points out. "With carbon nanotubes, all the atoms are on the surface of these carbon structures and the tubes themselves are hollow, so the CNT thread is small and light."

"Carbon thread that is a fraction of the weight of current copper conductors and antennas could directly apply and would be significant to aerospace activities commercial, military and space," he adds. "On any aircraft, there are about several hundred pounds of copper as cables and wiring."

Mast points out that the threads have what he calls an "immensely high tensile strength perhaps five times that of steel and yet they are less dense than steel."

Now that the team has shown the feasibility of such applications, the next steps will be to work on improvements (such as making yarn out of several threads) and to find industries that will commercialize CNT thread.

Mast's next step was going to be to buy a new cell phone. However, he says, "it works so well now that I decided to just upgrade to a new antenna made of carbon nanotube yarn."

This research was funded by the National Science Foundation (with technical monitors Shaochen Chen, Shih-Chi Liu, and K. Jimmy Hsia), and North Carolina A&T SU (collaborators Jag Sankar and Sergey Yarmolenko) through their NSF-ERC (technical monitor Lynn Preston) and ONR-CNN (technical monitor Ignacio Perez) projects.

####

For more information, please click here

Contacts:
Wendy Beckman
Phone: (513) 556-1826

Copyright © University of Cincinnati

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Videos/Movies

Researchers printed graphene-like materials with inkjet August 17th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Researchers printed graphene-like materials with inkjet August 17th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Engineers pioneer platinum shell formation process and achieve first-ever observation August 11th, 2017

Nanotubes/Buckyballs/Fullerenes/Nanorods

Regulation of two-dimensional nanomaterials: New driving force for lithium-ion batteries July 26th, 2017

Killing cancer in the heat of the moment: A new method efficiently transfers genes into cells, then activates them with light. This could lead to gene therapies for cancers July 9th, 2017

Tests show no nanotubes released during utilisation of nanoaugmented materials June 9th, 2017

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

Discoveries

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Announcements

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project