Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Spinning Carbon Nanotubes Spawns New Wireless Applications

Mast demonstrates the homemade dipole antenna.
Mast demonstrates the homemade dipole antenna.

Abstract:
Lighter, cheaper, safer a team of researchers at the University of Cincinnati, known for their world record-breaking carbon nanotubes, has discovered new applications of use to both military and consumer audiences.

Spinning Carbon Nanotubes Spawns New Wireless Applications

Cincinnati, OH | Posted on March 15th, 2009

The University of Cincinnati has long been known for its world-record-breaking carbon nanotubes. Now researchers at the University of Cincinnati have discovered new uses by spinning carbon nanotubes (CNTs) into longer fibers with additional useful properties.

Taking technology that has already been proven to grow carbon nanotubes of world-record breaking lengths, researchers Vesselin Shanov, Mark Schulz and Chaminda Jayasinghe in the UC College of Engineering NanoWorld Lab have now found new applications by spinning these fibers into strong threads.

David Mast, from UC's McMicken College of Arts and Sciences, saw possibilities in the threads. Mast, an associate professor of physics, took a 25-micron carbon nanotube thread and created a dipole antenna using double-sided transparent tape and silver paste. He was immediately successful in transmitting radio signals.

"It transmitted almost as well as the copper did, but at about one ten-thousandth of the weight," says Mast.

Mast was able to transmit both AM and FM in his lab, broadcasting a local NPR station.

"Then I decided to dismantle my cell phone," says Mast. He created a cell phone antenna, using CNT thread and tape. Ripping the back off his own cell phone, he tore out the phone's original antenna and replaced it with his home-made one. With the "nano-antenna" or "nantenna," he was able to get four to five "bars" of service, compared to none when he removed it.

"That was a very pleasant surprise, how easy it was to do," Mast says. "The hardest thing is to manipulate them. They float on ambient air."

From there it was an easy leap to video, in which he was again successful. "I want to now set up a wireless webcam for the lab using these thread antennas so that others can see how well they work."

Mast says that the key to the new applications is the quality of the material that Schulz and Shanov came up with using multi-wall carbon nanotubes.

"They spin thread that is of such high quality, it opens the door to incredible possibilities," says Mast. "This is just one of many potential applications."

Schulz explains that the carbon nanotube threads work well as an antenna because of something called the "skin effect."

"The electrons transfer well because they want to go to the surface," he says. "Instead of traveling through a bulk mass, they are traveling across a skin."

"Copper wire is a bulk material," Shanov points out. "With carbon nanotubes, all the atoms are on the surface of these carbon structures and the tubes themselves are hollow, so the CNT thread is small and light."

"Carbon thread that is a fraction of the weight of current copper conductors and antennas could directly apply and would be significant to aerospace activities commercial, military and space," he adds. "On any aircraft, there are about several hundred pounds of copper as cables and wiring."

Mast points out that the threads have what he calls an "immensely high tensile strength perhaps five times that of steel and yet they are less dense than steel."

Now that the team has shown the feasibility of such applications, the next steps will be to work on improvements (such as making yarn out of several threads) and to find industries that will commercialize CNT thread.

Mast's next step was going to be to buy a new cell phone. However, he says, "it works so well now that I decided to just upgrade to a new antenna made of carbon nanotube yarn."

This research was funded by the National Science Foundation (with technical monitors Shaochen Chen, Shih-Chi Liu, and K. Jimmy Hsia), and North Carolina A&T SU (collaborators Jag Sankar and Sergey Yarmolenko) through their NSF-ERC (technical monitor Lynn Preston) and ONR-CNN (technical monitor Ignacio Perez) projects.

####

For more information, please click here

Contacts:
Wendy Beckman
Phone: (513) 556-1826

Copyright © University of Cincinnati

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanoscale worms provide new route to nano-necklace structures March 29th, 2015

Solving molybdenum disulfide's 'thin' problem: Research team increases material's light emission by twelve times March 29th, 2015

A first glimpse inside a macroscopic quantum state March 28th, 2015

DFG to Establish One Clinical Research Unit and Five Research Units: New Projects to Investigate Complications in Pregnancy, Particle Physics, Nanoparticles, Implants and Transport Planning / Approximately 13 Million Euros in Funding for an Initial Three-Year Period March 28th, 2015

State-of-the-art online system unveiled to pinpoint metrology software accuracy March 27th, 2015

Videos/Movies

Novel nanoparticle therapy promotes wound healing March 27th, 2015

Carbon nanotube fibers make superior links to brain: Rice University invention provides two-way communication with neurons March 25th, 2015

ASIC Development for MEMS Applications: A Platform Approach March 25th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Nanoscale worms provide new route to nano-necklace structures March 29th, 2015

UT Dallas engineers twist nanofibers to create structures tougher than bulletproof vests March 27th, 2015

Novel nanoparticle therapy promotes wound healing March 27th, 2015

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Nanotubes/Buckyballs

Carbon nanotube fibers make superior links to brain: Rice University invention provides two-way communication with neurons March 25th, 2015

Iranian Scientists Eliminate Expensive Materials from Diabetes Diagnosis Sensors March 25th, 2015

Effect of Carbon Nanotubes on Properties of Cement Composites Studied in Iran March 23rd, 2015

First proof of isolated attosecond pulse generation at the carbon K-edge March 20th, 2015

Discoveries

Nanoscale worms provide new route to nano-necklace structures March 29th, 2015

Solving molybdenum disulfide's 'thin' problem: Research team increases material's light emission by twelve times March 29th, 2015

A first glimpse inside a macroscopic quantum state March 28th, 2015

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Announcements

Nanoscale worms provide new route to nano-necklace structures March 29th, 2015

Solving molybdenum disulfide's 'thin' problem: Research team increases material's light emission by twelve times March 29th, 2015

A first glimpse inside a macroscopic quantum state March 28th, 2015

DFG to Establish One Clinical Research Unit and Five Research Units: New Projects to Investigate Complications in Pregnancy, Particle Physics, Nanoparticles, Implants and Transport Planning / Approximately 13 Million Euros in Funding for an Initial Three-Year Period March 28th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE