Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Better lighting, power with quantum dots, nanomaterials

Ghassan Jabbour
Ghassan Jabbour

Abstract:
Imagine flexible lighting devices manufactured by using printing techniques. Imagine solar power sources equally as reliable and as portable as any conventional power source.

Such advances are among aims of research at Arizona State University to find ways of more effectively harnessing solar power and producing more energy-efficient, durable and custom-designed light sources. The work is now drawing support from two international corporations.

Better lighting, power with quantum dots, nanomaterials

Tempe, AZ | Posted on March 15th, 2009

U.S.-based Solterra Renewable Technologies Inc. and Nitto Denko Corp. of Japan are investing more than $3.7 million through grants to help fund the research led by ASU engineering professor Ghassan Jabbour.

Jabbour's work focuses on the use of nanomaterials and quantum dots in solar cells and solid state lighting. Technical advances in this area "will open the way for a new wave of more efficient and portable power and light sources in as many shapes and varieties as designers can imagine," he says.

Jabbour, who teaches in ASU's School of Materials, is doing his research through the Advanced Photovoltaics Center, which he directs. The center is part of the Arizona Institute for Renewable Energy at ASU. Jabbour also is director of optoelectronics research for the Flexible Display Center, part of the univerisity's Ira A. Fulton School of Engineering.

Illuminating printing processes

Work funded by the grants will include the study of the materials science, physics and engineering solutions necessary to produce the next generation of solar cells, which will cost less to produce and perform more efficiently, Jabbour says.

The project is an example of the economic benefit a research university can bring to its state. Each year, Arizona universities contribute nearly $1 billion into the Arizona economy from their research, most of which is funded by the U.S. government and entities from outside the state. Research money brought in by universities is restricted money that can be used only for the research activity it supports. It cannot be used to compensate for cuts in other parts of the university's budget.

The quantum dots/solar cells project already has brought a small company to open new operations at the ASU Research Park. Given the increasing interest in solar energy and the means to produce it at lower costs, the company can be expected to grow rapidly, Jabbour says.

One of the major scientific and engineering challenges of Ghassan's project involves how to employ printing techniques to fabricate low-cost alternatives to current solar cells. Research articles on printed organic solar cells written by Jabbour and other members of his team continue to be cited by fellow researchers more than any other articles in the area of printed ultra-thin solar area research. (Ultra-thin means it involves materials less than 100 times the thickness of a typical human hair.)

Printing is a viable method for mass production of solar cells. Some printing techniques, such as silk-screen printing (commonly used to print logos, numbers and pictures on textiles), are already used in some aspects of solar cell manufacturing.

Printing allows for large numbers of solar-cell devices to be manufactured rapidly, thus eventually bringing down costs.

"In our work, we will be investigating various techniques such as inkjet printing, screen printing, and roll-to-roll, which is similar to newspaper printing techniques, to see what works best for solar cell manufacturing," Jabbour says.

The power of photons

The material science and engineering aspect of the projects involves experiments with materials that exhibit unique properties at the nanoscale, specifically materials that use photons to achieve more efficient conversion of energy into electricity. The materials also have a broader absorption spectrum of incident solar light - meaning they can make more effective use of solar light for conversion into electricity.

"It's traditional to generate one electron-hole pair for every absorbed photon in most solar cells," Jabbour says, but researchers in his lab are working on generating more multiple electron-hole pairs per photon to achieve increased power-conversion efficiency. This is accomplished by producing a higher number of electrons for each absorbed photon from incident light.

In most bulk semiconducting materials, Jabbour explains, absorption of an incident photon (light quanta) with the right energy can excite an electron enough to move it across an energy band gap - thus resulting in an electron-hole pair. But the same photon might generate more than one electron-hole pair if the material is made into much smaller dimensions - such as the size of a quantum dot.

Quantum dots are small particles about few nanometers (a billionth of a meter) in size. By adjusting the particles' physical dimensions, their optical and electronic properties can be fine-tuned. Through such a process, the resulting characteristics of the materials are different than the characteristics of the same material in bulk size, Jabbour explains.

The challenge is how to extract most of the charges from the dots to transfer in the form of electrical current to the device being powered by the solar cell, he says.

Recent results of 3 percent in power conversion in this area are encouraging. Such an efficiency will continue to climb as better materials and device structures are being developed, which is a part of Jabbour's work supported by the grants.

Energy conservation goals

More efficient solar cells are only one part of the solution to the nation's growing energy needs. Just as important is making efficient use of energy in conventional systems, Jabbour says.

The two technologies he and his team are working on are interrelated, involving both energy generation and energy conservation. Although there is a strong push for alternative energy, including solar energy, Jabbour says much can be accomplished by focusing on research to lower the power consumption of conventional technologies. This work involves the area of solid state lighting.

One of the corporate grants is supporting work directly aimed at understanding the materials and device physics of nanoscale structures for low-power, nanothick solid state lighting applications.

The materials used are hybrid nanomaterials targeting white-light emission from a single building block. The light source made out of these materials also will have a nano-range thickness and can be operated at high brightness (equivalent to a ceiling lamp) using a 9-volt battery source. Just as with solar cells, these light sources will also be printable in the future, Jabbour says.

Flexibility in lighting devices

"The beauty of these two projects is their compatibility with rugged substrates, including flexible ones," he says.

A substrate is a material on which circuits or other small devices are formed or fabricated. Flexible substrates (for example, plastic, thin metal foils, or cloth) allow for more durable lights that also weigh less than conventional lighting devices and can be produced in a variety of shapes.

"Imagine a light that is made on a roll that can be cut into various shapes according to the desire of the user," Jabbour says. Such an advance is still far off, but not impossible. In fact, he points out, printed lights made out of inorganic phosphors that operate at about 120 to 150 volts are already available. The drawback is that currently they can be operated only at such high voltages.

The two technologies promise to provide low-cost, high-efficiency solar cells and solid state lights that can be made on thin flexible substrates, resulting in light-weight durable modules that are easier to place on roof tops (for example, solar-cell arrays) and indoors (lamps and similar lighting devices).

####

For more information, please click here

Contacts:

Joe Kullman

(480) 965-8122
Ira A. Fulton School of Engineering

Copyright © Arizona State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New Biological Nano-Fertilizers Presented in Iran as Appropriate Replacements for Chemical Fertilizers April 18th, 2015

Iranian Foodstuff, Agricultural Industries Welcome Nanotechnology Packaging Bags April 18th, 2015

Nanocomposites Play Effective Role in Production of Smart Fibers April 18th, 2015

Dais Analytic Corporation Appoints Eliza Wang to Board of Directors: Company's Newest Director Brings Expertise in Commercial and Legal Matters Both in the United States and China; Joins on the Heels of Successful Business Development Trade Mission to China April 18th, 2015

Display technology/LEDs/SS Lighting/OLEDs

QD Vision Expands Product Line with Two-Millimeter Color LCD Display Optic: Color IQ™ Optic Enables Full-Color Gamut for Ultra-Thin Displays and All-in-One Computers April 16th, 2015

Light in a spin: Researchers demonstrate angular accelerating light April 15th, 2015

Roll up your screen and stow it away? Tel Aviv University researchers develop molecular backbone of super-slim, bendable digital displays March 30th, 2015

Solving molybdenum disulfide's 'thin' problem: Research team increases material's light emission by twelve times March 29th, 2015

Discoveries

Optical resonance-based biosensors designed for medical applications April 18th, 2015

Iranian Foodstuff, Agricultural Industries Welcome Nanotechnology Packaging Bags April 18th, 2015

Nanocomposites Play Effective Role in Production of Smart Fibers April 18th, 2015

Protein Building Blocks for Nanosystems: Scientists develop method for producing bio-based materials with new properties April 17th, 2015

Announcements

New Biological Nano-Fertilizers Presented in Iran as Appropriate Replacements for Chemical Fertilizers April 18th, 2015

Iranian Foodstuff, Agricultural Industries Welcome Nanotechnology Packaging Bags April 18th, 2015

Nanocomposites Play Effective Role in Production of Smart Fibers April 18th, 2015

Dais Analytic Corporation Appoints Eliza Wang to Board of Directors: Company's Newest Director Brings Expertise in Commercial and Legal Matters Both in the United States and China; Joins on the Heels of Successful Business Development Trade Mission to China April 18th, 2015

Energy

Dais Analytic Corporation Appoints Eliza Wang to Board of Directors: Company's Newest Director Brings Expertise in Commercial and Legal Matters Both in the United States and China; Joins on the Heels of Successful Business Development Trade Mission to China April 18th, 2015

Major advance in artificial photosynthesis poses win/win for the environment: Berkeley Lab researchers perform solar-powered green chemistry with captured CO2 April 16th, 2015

Newly-Developed Nanocatalysts Increase Performance of Fuel Cells April 16th, 2015

Graphenea embarks on a new era April 16th, 2015

Quantum Dots/Rods

QD Vision Expands Product Line with Two-Millimeter Color LCD Display Optic: Color IQ™ Optic Enables Full-Color Gamut for Ultra-Thin Displays and All-in-One Computers April 16th, 2015

Promising future of quantum dots explored in conference: ‘20 Years of Quantum Dots at Los Alamos’ runs April 12-16 April 13th, 2015

Next important step toward quantum computer: Scientists at the University of Bonn have succeeded in linking 2 different quantum systems March 30th, 2015

Tiny bio-robot is a germ suited-up with graphene quantum dots March 24th, 2015

Solar/Photovoltaic

The microscopic topography of ink on paper: Researchers have analyzed the varying thickness of printed toner in unprecedented 3-D detail, yielding insights that could lead to higher quality, less expensive and more environmentally-friendly glossy and non-glossy papers April 14th, 2015

Graphene pushes the speed limit of light-to-electricity conversion: Researchers from ICFO, MIT and UC Riverside have been able to develop a graphene-based photodetector capable of converting absorbed light into an electrical voltage at ultrafast timescales April 14th, 2015

Iranian Scientists Use Ultrasound Waves to Produce Fullerene April 9th, 2015

Wrapping carbon nanotubes in polymers enhances their performance: Scientists at Japan's Kyushu University say polymer-wrapped carbon nanotubes hold much promise in biotechnology and energy applications March 30th, 2015

Printing/Lithography/Inkjet/Inks

The microscopic topography of ink on paper: Researchers have analyzed the varying thickness of printed toner in unprecedented 3-D detail, yielding insights that could lead to higher quality, less expensive and more environmentally-friendly glossy and non-glossy papers April 14th, 2015

Inkjet-printed liquid metal could bring wearable tech, soft robotics April 8th, 2015

Perpetuus Advanced Materials secures landmark commercial agreement with global technology group Heraeus: Perpetuus will supply innovative alternatives to existing silver and copper-based inks and pastes April 2nd, 2015

Haydale Announce Dedicated Graphene Inks Manufacturing Capability March 25th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE