Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > News > Nanotubes That See Everything: Carbon nanotubes that respond to visible light might mean better solar cells and artificial retinas.

March 5th, 2009

Nanotubes That See Everything: Carbon nanotubes that respond to visible light might mean better solar cells and artificial retinas.

Abstract:
Researchers at Sandia National Laboratories, in Livermore, CA, have created the first carbon-nanotube devices that can detect the entire visible spectrum of light. Their work might one day find a range of applications, including in solar cells that absorb more light, tiny cameras that work in very low light, and better artificial retinas.

Other researchers have demonstrated nanotubes that can detect light of specific wavelengths, including ultraviolet light, but never the entire visible spectrum of light. "This is a significant milestone," says George Grüner, a professor of physics and head of the Nano-Biophysics Group at the University of California, Los Angeles, who was not involved in the Sandia work.

The light sensor inside a digital camera--known as a charge-coupled device--converts light into an electrical signal because as photons bombard silicon, they create electron holes in the material. In contrast, carbon-nanotube light sensors work in a similar way to biological eyes. The nanotubes are decorated with three kinds of chromophores--molecules that change shape in response to a particular wavelength of light. This change in shape results in a change in the chromophores' orientations with respect to the nanotube that, in turn, changes the electrical conductivity of the nanotube in a way that can be measured to deduce the color and intensity of the light. The Sandia researchers used three different types of chromophores, which respond to either red, green, or blue bands of the visible-light spectrum.

Source:
technologyreview.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Ultra-flat circuits will have unique properties: Rice University lab studies 2-D hybrids to see how they differ from common electronics July 25th, 2016

Attosecond physics: Mapping electromagnetic waveforms July 25th, 2016

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Nanotubes/Buckyballs/Fullerenes

Easier, faster, cheaper: A full-filling approach to making nanotubes of consistent quality: Approach opens a straightforward route for engineering the properties of single-wall carbon nanotubes July 19th, 2016

Sensing trouble: A new way to detect hidden damage in bridges, roads: University of Delaware engineers devise new method for monitoring structural health July 8th, 2016

Wireless, wearable toxic-gas detector: Inexpensive sensors could be worn by soldiers to detect hazardous chemical agents July 4th, 2016

Nanotubes' 'stuffing' as is: A scientist from the Lomonosov Moscow State University studied the types of carbon nanotubes' 'stuffing' June 2nd, 2016

Discoveries

Attosecond physics: Mapping electromagnetic waveforms July 25th, 2016

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

Announcements

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

XEI Scientific Partners with Electron Microscopy Sciences to Promote and Sell its Products in North and South America July 25th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic