Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > News > Nanotubes That See Everything: Carbon nanotubes that respond to visible light might mean better solar cells and artificial retinas.

March 5th, 2009

Nanotubes That See Everything: Carbon nanotubes that respond to visible light might mean better solar cells and artificial retinas.

Abstract:
Researchers at Sandia National Laboratories, in Livermore, CA, have created the first carbon-nanotube devices that can detect the entire visible spectrum of light. Their work might one day find a range of applications, including in solar cells that absorb more light, tiny cameras that work in very low light, and better artificial retinas.

Other researchers have demonstrated nanotubes that can detect light of specific wavelengths, including ultraviolet light, but never the entire visible spectrum of light. "This is a significant milestone," says George Grüner, a professor of physics and head of the Nano-Biophysics Group at the University of California, Los Angeles, who was not involved in the Sandia work.

The light sensor inside a digital camera--known as a charge-coupled device--converts light into an electrical signal because as photons bombard silicon, they create electron holes in the material. In contrast, carbon-nanotube light sensors work in a similar way to biological eyes. The nanotubes are decorated with three kinds of chromophores--molecules that change shape in response to a particular wavelength of light. This change in shape results in a change in the chromophores' orientations with respect to the nanotube that, in turn, changes the electrical conductivity of the nanotube in a way that can be measured to deduce the color and intensity of the light. The Sandia researchers used three different types of chromophores, which respond to either red, green, or blue bands of the visible-light spectrum.

Source:
technologyreview.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Haydale Named Lead Sponsor for Cambridge Graphene Festival May 22nd, 2015

Simulations predict flat liquid May 21st, 2015

Nanotubes/Buckyballs/Fullerenes

Researchers develop new way to manufacture nanofibers May 21st, 2015

Sandia researchers first to measure thermoelectric behavior by 'Tinkertoy' materials May 20th, 2015

Cotton fibres instead of carbon nanotubes May 9th, 2015

A better way to build DNA scaffolds: McGill researchers devise new technique to produce long, custom-designed DNA strands May 6th, 2015

Discoveries

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Nanotherapy effective in mice with multiple myeloma May 21st, 2015

Turn that defect upside down: Twin boundaries in lithium-ion batteries May 21st, 2015

Announcements

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Haydale Named Lead Sponsor for Cambridge Graphene Festival May 22nd, 2015

INSIDDE: Uncovering the real history of art using a graphene scanner May 21st, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project