Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Georgia Tech will push boundaries of nanotechnology research with innovative low-temperature carbon nanotube fabrication tool

Low temperature growth of carbon nanotubes is a research goal of the Georgia Institute of Technology, using a new tool and process from Surrey NanoSystems.
Low temperature growth of carbon nanotubes is a research goal of the Georgia Institute of Technology, using a new tool and process from Surrey NanoSystems.

Abstract:
- processing temperatures of ~350 C supports growth on flexible polymer substrates

- carbon-nanotube heatsink structures for thermal management are one major design goal

Georgia Tech will push boundaries of nanotechnology research with innovative low-temperature carbon nanotube fabrication tool

Atlanta, GA | Posted on March 2nd, 2009

The leading research university, Georgia Institute of Technology, has ordered a nanomaterial growth tool from Surrey NanoSystems.

The NanoGrowth 1000n equipment chosen incorporates an innovative low-temperature growth module that will allow precision carbon nanotubes and related nanomaterials to be grown repeatably at much lower temperatures than normal - down to 350 degrees C initially and potentially even lower. The capability will help researchers to explore growth on a very wide range of target substrates from active silicon devices to flexible polymer substrates.

One of Georgia Tech 's major research aims is to investigate the development of carbon nanotube (CNT) heatsink structures to dramatically increase heat conduction and dissipation capability - combating a prime cause of silicon chip failure and supporting further advances in integration density and performance.

Georgia Tech chose Surrey NanoSystems' NanoGrowth tool primarily for the flexibility of research opened up by its low-temperature capability, and its ability to grow material across large substrate areas of up to 4 inches (100 mm).

Dr Baratunde Cola, Assistant Professor at the George W Woodruff School of Mechanical Engineering, specified the equipment. During the selection process, against strong competition from a number of other tool vendors, Surrey NanoSystems demonstrated the NanoGrowth's ability to grow ordered nanostructures on flexible polymer materials of the general type used for flexible printed circuits. The team also grew sample structures using special catalyst materials created by Georgia Tech to foster particular nanomaterial structures of interest. The processing temperature used in the trials was around 350 degrees C. However, trials at even lower processing temperatures of around 300 degrees C are planned.

Dr Cola has just established a new research group called NEST - NanoEngineered Systems and Transport Research Group - that further extends the University's large footprint in nanotechnology research. NEST is a part of Georgia Tech's renowned Microelectronics Research Center and its research aims include developing technology for cleaner energy solutions, smaller and more affordable electronics, and general improvements to global living standards.

The NanoGrowth tool is one of the first and most important pieces of capital equipment that will be available to the NEST team. The tool includes both CVD (chemical vapor deposition) and PECVD (plasma-enhanced CVD) processing capability, allowing CNT growth at 'standard' temperatures in and around the 500-1000 degrees C range, as well as at much lower temperatures of 350-400 degrees C and below. Low temperature growth is particularly interesting, as it opens up many new application areas for CNTs. However, the team is equally interested in NanoGrowth's conventional high temperature growth capability, as the tool will be available to a wide spectrum of nanotechnology researchers and students.

Developed with the help of groundbreaking research into CNT fabrication undertaken at the UK University of Surrey's Advanced Technology Institute, NanoGrowth comes with proven recipes for the precise and repeatable growth of CNTs and other nanomaterials. When fitted with the company's unique patented low-temperature fabrication system, a combination of heat removal hardware and processing steps allow precise carbon nanotube growth at temperatures below 400 degrees C, making the system suitable for growing nanomaterials on fabricated silicon structures for advanced insulation or conduction purposes.

Another novel feature of the NanoGrowth tool that supports this application area is its innovative heat transfer system. This allows processing temperatures to ramp at up to 300 degrees C per second. This highly dynamic performance - which is an order of magnitude or more faster than many other tools - provides a platform for complex CNT research as it can allows can prevent ultra-finely-spaced catalyst material deposits from agglomerating during heating, supporting the growth of highly integrated arrays and shapes.

"Engineered nanostructures can be exploited to enhance energy transport and conversion processes and catalyze progress in a very large number of applications," says Assistant Professor Baratunde Cola of Georgia Institute of Technology. "The versatility of the NanoGrowth system will be a critical resource in this work, giving us the means to explore the growth of nanostructures on a very broad range of surfaces."

The NanoGrowth system will be delivered in Q2 2009. During the system building period, Surrey NanoSystems' scientific staff will be assisting Dr Cola by performing a number of trial nanomaterial growth processes to his specifications using NanoGrowth tools installed at the company and at the University of Surrey's Advanced Technology Institute. The target substrates include the high performance polyimide film Kapton, and Surrey NanoSystems expects to provide Dr Cola with a proven processing 'recipe' to allow his detailed research work to begin very quickly once the system is installed.

"NanoGrowth addresses the commercial process developer's need for stable and repeatable results, providing automated control over all aspects of CNT synthesis from catalyst generation to final material processing", says Duncan Cooper. "The tool's low temperature capability has allowed us to create processing recipes that can be applied to mainstream CMOS semiconductor processes, and we are now delighted to be working with such a prominent research university as Georgia Tech to grow engineered nanostructures at even lower temperatures."

####

About Georgia Institute of Technology

Surrey NanoSystems is represented in the US by Axiom Resources Technologies of Orange, CA.

Any trade names used are the property of their owners and are recognised by Surrey NanoSystems, including Kapton - a registered mark of DuPont.

For more information, please click here

Contacts:
Surrey NanoSystems
Euro Business Park, Building 24
Newhaven, BN9 0DQ, UK
t: +44 (0)1273 515899


US representative:
Axiom Resources Technologies, Inc.
1669 North O'Donnell Way
Orange, CA 92867-3634, USA.
t: 714-974-4141

www.axrtech.com

Copyright © Surrey NanoSystems

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Leti Presents Advances in Propagation Modeling and Antenna Design for mmWave Spectrum: Paper Is One of 15 that Leti Presented at European Conference on Antennas and Propagation March 19-24 March 23rd, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Academic/Education

AIM Photonics Welcomes Coventor as Newest Member: US-Backed Initiative Taps Process Modeling Specialist to Enable Manufacturing of High-Yield, High-Performance Integrated Photonic Designs March 16th, 2017

Nominations Invited for $250,000 Kabiller Prize in Nanoscience: Major international prize recognizes a visionary nanotechnology researcher February 20th, 2017

Oxford Nanoimaging report on how the Nanoimager, a desktop microscope delivering single molecule, super-resolution performance, is being applied at the MRC Centre for Molecular Bacteriology & Infection November 22nd, 2016

The University of Applied Sciences in Upper Austria uses Deben tensile stages as an integral part of their computed tomography research and testing facility October 18th, 2016

Nanotubes/Buckyballs/Fullerenes

Intertronics introduce new nanoparticle deagglomeration technology March 15th, 2017

Boron atoms stretch out, gain new powers: Rice University simulations demonstrate 1-D material's stiffness, electrical versatility January 26th, 2017

New stem cell technique shows promise for bone repair January 25th, 2017

Captured on video: DNA nanotubes build a bridge between 2 molecular posts: Research may lead to new lines of direct communication with cells January 9th, 2017

Announcements

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Tools

Caught on camera -- chemical reactions 'filmed' at the single-molecule level March 22nd, 2017

CRMGroup in Belgium uses a Deben three point bending stage in the development of new steel & coated steel products for automotive and other industrial applications March 21st, 2017

Next-gen steel under the microscope March 18th, 2017

Novel nozzle saves crystals: Double flow concept widens spectrum for protein crystallography March 17th, 2017

New-Contracts/Sales/Customers

JPK selects compact tensile stage from Deben for their NanoWizardŽ AFM platform to broaden capabilities for materials characterisation February 22nd, 2017

Cetim Facility Receives Bruker Contour CMM Dimensional Analysis System: New Optical Coordinate Measurement Technology Enables High-Precision 3D Scanning November 16th, 2016

Industrial Nanotech, Inc. Announces Plans to Spin Off New Product Line to Major Paint Compan November 9th, 2016

Leti Provides New Low-noise Image Technology to French SME PYXALIS; Will Be Demonstrated at Vision 2016 in Stuttgart November 3rd, 2016

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project