Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Single polymer chains as molecular wires

Abstract:
The research team of Leonhard Grill at Freie Universität Berlin - in collaboration with the synthetic chemistry group of Stefan Hecht from Humboldt University of Berlin and the theoretical physics group of Christian Joachim of the CEMES-CNRS institute in Toulouse - has succeeded in lifting single polymers from a gold surface, similar to chains, and in measuring their electrical and mechanical properties during this process. The scientists place one end of a polymer strand in contact with a metallic tip, thereby inducing an electrical current through single molecular wires over extraordinarily long distances during the pulling process. The results were published in the most recent issue of Science.

Single polymer chains as molecular wires

Berlin, Germany | Posted on February 26th, 2009

A central vision of nanotechnology lies in the construction of electronic circuits on the nanometer scale (1nm = 1 millionth millimeter). The development of such fascinating devices, which would revolutionize many applications, requires molecular "cables" and a detailed understanding of electrical transport through such small wires. Thus, it is necessary to determine the electrical current through a single molecular wire, contacted to two electrodes, as a function of its length. Up to date, only relatively short wires with a fixed length have been investigated, and most of the studies were based on statistical measurements, making the exact characterization of a single wire impossible.

The molecular wires were constructed by connecting single molecules on a gold surface to a polymer chain. After one end of the chain was contacted with the tip, the other end remains on the metal surface and the distance between the two electrodes (tip and surface) is varied continuously during the pulling of the polymer. Using this method, it was possible for the first time to measure the charge transfer through a single polymer for different lengths of up to more than 20 nanometers. These experiments provide insight into the electrical properties and also into the mechanical characteristics of single polymers, which behave like macroscopic chains as one chain unit after another is detached from the surface during the pulling process.

The electrical transport on the level of single molecular wires is of great importance for any electronic application in molecular nanotechnology. In the reported experiments it was possible for the first time to characterize the dependence of the electrical conductance on the length of the molecular wire and its mechanical properties. In the future, using this method, it should be possible to optimize molecular wires with respect to their suitability for applications.

* Full bibliographic information: Publication:
L. Lafferentz, F. Ample, H. Yu, S. Hecht, C. Joachim, L. Grill
"Conductance of a Single Conjugated Polymer as a Continuous Function of Its Length"
Science (Feb. 27, 2009); Internet: www.sciencemag.org/

####

For more information, please click here

Contacts:
Leonhard Grill
Physics Department
Freie Universität Berlin
Phone: +49 30 838 56042
or +49 1577 572 0904

Copyright © Freie Universität Berlin

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

Yale researchers’ technology turns wasted heat into power June 27th, 2016

Discoveries

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

Yale researchers’ technology turns wasted heat into power June 27th, 2016

Materials/Metamaterials

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Coexistence of superconductivity and charge density waves observed June 23rd, 2016

GraphExeter illuminates bright new future for flexible lighting devices June 23rd, 2016

Soft decoupling of organic molecules on metal June 23rd, 2016

Announcements

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

Yale researchers’ technology turns wasted heat into power June 27th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic