Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Strength through diversity

Abstract:
Tiny light-emitting diodes with optical microsystems that can produce all the colors of the rainbow, a new method for producing printed circuit boards - Fraunhofer researchers are showing innovative developments at the nano tech 2009 exhibition in Japan.

Strength through diversity

Germany | Posted on February 12th, 2009

Good ideas are not hard to find. But only those ideas that can be implemented into new, unprecedented applications become innovations. Those wanting to develop innovative products must therefore be able to think outside the box of their own area of expertise. "Fraunhofer's strength lies in interaction. When the Institutes pool their competencies, the result is enormous potential for innovation," as Dr. Michael Popall from the Fraunhofer Institute for Silicate Research ISC in Würzburg, Germany knows. The team is developing new nanotech products in cooperation with researchers at various
Fraunhofer Institutes. Some of these products can be seen from 18 to 20 February 2009 at this year's nano tech in Tokyo, Big Sight East, Building 5, Booth C21.

Highly-efficient light-emitting diodes, LEDs for short, are incredibly tiny and yet also enormously versatile: they can be put to use to light buildings, vehicles and traffic signs. They can even be used for projecting images. Researchers from the Fraunhofer Institute for Applied Optics and Precision Engineering IOF have developed a special optical microsystem for this purpose. This system consists of a primary optical system that aligns the light and a secondary one that spreads the waves uniformly. Micro-lens arrays handle the second part. These arrays are made of float glass that has been coated on both sides with ORMOCER®, an inorganic-organic hybrid polymer developed by ISC. The micro-lens structure is imprinted into these polymer layers and cured with UV light. This is done on both sides in one mirror-symmetric process step. ORMOCER® microstructures not only have very high photon permeability, they also withstand constant high temperatures and light intensities, and so result in an optical system that is powerful and durable.

Fraunhofer researchers are also pursuing interdisciplinary developments in new technologies for manufacturing printed circuit boards. The experts at the Fraunhofer Institute for Manufacturing Technology and Applied Materials Research IFAM are adapting rapid prototyping printing technology to the requirements of board and module manufacturers. The nanomaterials for PCB tracks and for insulating intermediate layers can consequently be applied to a substrate layer by layer. The ISC team developed a new ORMOCER® for this and furthermore contributed know-how in handling the nanometer-sized hybrid polymers. The experts from the Fraunhofer Institute for Integrated Circuits IIS took over the design of test chips, while their colleagues from the Fraunhofer Institute for Reliability and Microintegration IZM handled the testing and design of the board itself. The new method is ideal for manufacturing prototypes and small series of complex printed circuit boards with high integration levels. Popall explains, "Although the manufacturing takes longer than when classic lithographic methods are used, and it is also not cheap, it is possible to eliminate the very expensive manufacture of masks and to gain design flexibility."

Carbon nanotubes, or CNT for short, are opening up more and more new possibilities for the researchers. The experts from the Fraunhofer Institute for Manufacturing Engineering and Automation IPA are presenting a composite material at the exhibition. This material can be used to manufacture seat heaters, floor heating, boilers, bathroom mirrors that do not fog up and even handlebar heaters. The nanotubes, which very efficiently convert electricity into heat, are integrated into the parts as a filling material. They give the finished product the required mechanical, electrical and thermal properties.

"Fraunhofer's strength lies in the enormous spectrum of diverse competencies," Popall continues. "When we pool these, we have almost unsurpassable potential for developing new things, and not only in nanotechnology."

####

Contacts:
Michael Popall
Fraunhofer
Fraunhofer Institute for Silicate Research ISC Bronnbach 28
97877 Wertheim
GERMANY

Tel: 0049-931 4100 522
Fax: 0049-931 4100 559

Copyright © Fraunhofer Institute for Silicate Research

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

UK NANOSAFETY GROUP publishes 2nd Edition of guidance to support safe working with nanomaterials May 30th, 2016

Fast, stretchy circuits could yield new wave of wearable electronics May 30th, 2016

Automating DNA origami opens door to many new uses: Like 3-D printing did for larger objects, method makes it easy to build nanoparticles out of DNA May 30th, 2016

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Display technology/LEDs/SS Lighting/OLEDs

Nanotubes are beacons in cancer-imaging technique: Rice University researchers use spectral triangulation to pinpoint location of tumors May 21st, 2016

This 'nanocavity' may improve ultrathin solar panels, video cameras and more May 16th, 2016

New research shows how silver could be the key to gold-standard flexible gadgets: Silver nanowires are an ideal material for current and future flexible touch-screen technologies May 13th, 2016

First single-enzyme method to produce quantum dots revealed: Biological manufacturing process, pioneered by three Lehigh University engineers, produces equivalent quantum dots to those made chemically--but in a much greener, cheaper way May 9th, 2016

Chip Technology

Fast, stretchy circuits could yield new wave of wearable electronics May 30th, 2016

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Diamonds closer to becoming ideal semiconductors: Researchers find new method for doping single crystals of diamond May 25th, 2016

Dartmouth team creates new method to control quantum systems May 24th, 2016

Announcements

UK NANOSAFETY GROUP publishes 2nd Edition of guidance to support safe working with nanomaterials May 30th, 2016

Fast, stretchy circuits could yield new wave of wearable electronics May 30th, 2016

Automating DNA origami opens door to many new uses: Like 3-D printing did for larger objects, method makes it easy to build nanoparticles out of DNA May 30th, 2016

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Events/Classes

Novel gene therapy shows potential for lung repair in asthma May 18th, 2016

Arrowhead Pharmaceuticals' Preclinical Candidate ARC-LPA Achieves 98% Knockdown and Long Duration of Effect after Subcutaneous Administration May 10th, 2016

Nanometrics Announces Upcoming Investor Events May 10th, 2016

Oxford Instruments Asylum Research and McGill University Announce the McGill AFM Summer School and Workshop, May 12-13, 2016 May 4th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic