Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Applied NanoWorks Develops FlexBTM Flame Retardant: Achieves UL-94 V-0 Ratings at Low-Load Levels

Abstract:
Applied NanoWorks (ANW), an inorganic materials development company, has announced FlexB™, a boron-based, non-halogenated flame retardant (FR) additive for nylon, epoxies and water-based coatings. Material testing has achieved UL-94 V-0 ratings with FlexB loading levels as low as 3%.

Applied NanoWorks Develops FlexBTM Flame Retardant: Achieves UL-94 V-0 Ratings at Low-Load Levels

MALTA, NY | Posted on February 10th, 2009

"FlexB™ is targeted at high-performance materials where traditional high load levels negatively affect weight, strength and other physical attributes," said Josh Kunkel, Business Development Manager at ANW. "FlexB™ addresses the industry need for non-halogenated flame-resistance while keeping polymer performance at optimized levels."

With increasingly stringent government regulation and consumer demand for more environmentally friendly materials, the plastics and coatings industries are seeking non-halogenated low-load fire retardants. "In many applications halogenated FR additives are just not an option anymore," Kunkel noted.

Engineering plastics, commonly used in automotive and electrical applications, often must meet UL-94 V-0 flammability ratings. Many current FR additives require loading levels as high as 20-30% to meet this standard, impacting the processability, rheology and mechanical properties of the material. The ability of the FlexB™ FR additive to achieve UL-94 V-0 ratings at load levels as low as 3% provides flexibility in material performance and selection.

"FlexB™ has shown increased flame retardancy over traditional FR additives by as much as 10X," stated Kyle Litz, Chief Technology Officer at ANW. "This increase is due to the ability of FlexB to bind into the backbone of the polymer, providing four levels of protection: off-gassing, water productions, charring and thermal shielding. This is a significant advancement over current flame retardant additives that are simply mixed in with the polymer."

The FlexB™ flame retardant additive, developed using Applied NanoWorks' MCP Technology™ platform, is designed to deliver specific performance gains to material systems requiring flame retardants. Due to the increased inorganic functionality derived from MCP Technology™ FlexFR flame retardant additives are a fundamentally simpler way to add FR characteristics to polymers.

The Underwriters Laboratories Inc. UL-94 program defines the Standard for Flammability of Plastic Materials for Parts in Devices and Appliances. The UL-94 V-0 classification relates to materials commonly used in manufacturing enclosures, structural parts and insulators found in consumer electronic products.

####

About Applied NanoWorks (ANW)
Applied NanoWorks is an inorganic materials development company focused on creating inorganics that provide new levels of performance required to build successful material systems for a clean tech world.

For more information, please click here

Contacts:
Eric Burnett
President & CEO
Applied NanoWorks, Inc.
518.899.9600 ext 110

Copyright © Marketwire

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project