Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Applied NanoWorks Develops FlexBTM Flame Retardant: Achieves UL-94 V-0 Ratings at Low-Load Levels

Abstract:
Applied NanoWorks (ANW), an inorganic materials development company, has announced FlexB™, a boron-based, non-halogenated flame retardant (FR) additive for nylon, epoxies and water-based coatings. Material testing has achieved UL-94 V-0 ratings with FlexB loading levels as low as 3%.

Applied NanoWorks Develops FlexBTM Flame Retardant: Achieves UL-94 V-0 Ratings at Low-Load Levels

MALTA, NY | Posted on February 10th, 2009

"FlexB™ is targeted at high-performance materials where traditional high load levels negatively affect weight, strength and other physical attributes," said Josh Kunkel, Business Development Manager at ANW. "FlexB™ addresses the industry need for non-halogenated flame-resistance while keeping polymer performance at optimized levels."

With increasingly stringent government regulation and consumer demand for more environmentally friendly materials, the plastics and coatings industries are seeking non-halogenated low-load fire retardants. "In many applications halogenated FR additives are just not an option anymore," Kunkel noted.

Engineering plastics, commonly used in automotive and electrical applications, often must meet UL-94 V-0 flammability ratings. Many current FR additives require loading levels as high as 20-30% to meet this standard, impacting the processability, rheology and mechanical properties of the material. The ability of the FlexB™ FR additive to achieve UL-94 V-0 ratings at load levels as low as 3% provides flexibility in material performance and selection.

"FlexB™ has shown increased flame retardancy over traditional FR additives by as much as 10X," stated Kyle Litz, Chief Technology Officer at ANW. "This increase is due to the ability of FlexB to bind into the backbone of the polymer, providing four levels of protection: off-gassing, water productions, charring and thermal shielding. This is a significant advancement over current flame retardant additives that are simply mixed in with the polymer."

The FlexB™ flame retardant additive, developed using Applied NanoWorks' MCP Technology™ platform, is designed to deliver specific performance gains to material systems requiring flame retardants. Due to the increased inorganic functionality derived from MCP Technology™ FlexFR flame retardant additives are a fundamentally simpler way to add FR characteristics to polymers.

The Underwriters Laboratories Inc. UL-94 program defines the Standard for Flammability of Plastic Materials for Parts in Devices and Appliances. The UL-94 V-0 classification relates to materials commonly used in manufacturing enclosures, structural parts and insulators found in consumer electronic products.

####

About Applied NanoWorks (ANW)
Applied NanoWorks is an inorganic materials development company focused on creating inorganics that provide new levels of performance required to build successful material systems for a clean tech world.

For more information, please click here

Contacts:
Eric Burnett
President & CEO
Applied NanoWorks, Inc.
518.899.9600 ext 110

Copyright © Marketwire

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Materials/Metamaterials

A metal that behaves like water: Researchers describe new behaviors of graphene February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

SLAC X-ray laser turns crystal imperfections into better images of important biomolecules: New method could remove major obstacles to studying structures of complex biological machines February 11th, 2016

Chemical cages: New technique advances synthetic biology February 10th, 2016

Announcements

Graphene leans on glass to advance electronics: Scientists' use of common glass to optimize graphene's electronic properties could improve technologies from flat screens to solar cells February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic