Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Nano-structured parts

Abstract:
Materials with a nanoparticle structure are stronger and harder than materials made of larger particles. A new manufacturing technique ensures that such microcrystalline structures remain intact when being processed.

Nano-structured parts

Germany | Posted on February 3rd, 2009



Aluminum is light but also bends easily. However, if it has a nanometer structure, it features quite different properties: The material is much stronger and firmer, and this makes it ideal for engine screws, which have to withstand high temperatures. It is also eminently suitable for making lightweight parts, for the stronger the material, the thinner the sheets for the components can be made. The material's properties are mainly due to the tiny size of its crystals. These are much smaller than those in conventional materials, hence the designation "microcrystalline structures".

One of the challenges posed by such nano materials lies in processing them to make tools or components. Pressing or joining requires that the material be heated. This causes the crystals to grow, so the structures become larger. In short, the material loses its "nano properties" as it heats up. Researchers at the Fraunhofer Institute for Manufacturing Engineering and Applied Materials Research IFAM in Dresden have risen to the challenge. "Our goal is to preserve the material's microcrystalline structure throughout the entire component manufacturing process," states IFAM project manager Dr. Ronny Leuschner. To this end, the researchers have set up a special technology chain for manufacturing nano-structured aluminum and other materials. "First of all, we produce a special aluminum alloy," says Leuschner. "The metal melt has to be cooled very rapidly, so we virtually freeze it." This is done using the "melt spinning" technique: A specially developed spraying device pours the melt onto a water-cooled rotating roller, producing uniform strips or "flakes" no more than a few micrometers thick. As soon as it hits the roller, the melt rapidly loses heat and the flakes solidify at top speed. The advantage of this system is that it can handle several kilograms of material and withstand temperatures of more than 1700 degrees Celsius. "Once they have solidified, the flakes need to be compacted and pressed into the desired shape," explains Leuschner. During this step, too, their microcrystalline structures must remain intact. The method the researchers use in this case is spark plasma sintering: High-frequency current pulses inside the press compact the material in a very short space of time so that the fine microstructures are preserved. Applications for these nano materials range from lightweight aluminum parts with greater strength and improved wear and corrosion resistance, to hydrogen storage, energy production with thermoelectric materials, and electrical engineering.

####

For more information, please click here

Contacts:
Dr.-Ing. Ronny Leuschner
Phone: +49 351 2537-397
Fax: +49 351 2554-492
Fraunhofer Institute for Manufacturing Technology and Applied Materials Research
IFAM-DD
Winterbergstr. 28
01277 Dresden

Copyright © Fraunhofer-Gesellschaft

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity: X-rays reveal how rapidly vanishing 'charge stripes' may be behind laser-induced high-temperature superconductivity April 16th, 2014

'Life Redesigned: The Emergence of Synthetic Biology' Lecture at Brookhaven Lab on Wednesday, April 30: Biomedical Engineer James Collins to Speak for BSA Distinguished Lecture Series April 16th, 2014

ECHA Planning Workshop on Regulatory Challenges in the Risk Assessment of Nanomaterials April 16th, 2014

Lumerical files a provisional patent that extends the standard eigenmode expansion propagation technique to better address waveguide component design. Lumerical’s EME propagation tool will address a wide set of waveguide applications in silicon photonics and integrated optics April 16th, 2014

Discoveries

Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity: X-rays reveal how rapidly vanishing 'charge stripes' may be behind laser-induced high-temperature superconductivity April 16th, 2014

Scientists observe quantum superconductor-metal transition and superconducting glass: A team including MIPT physicist observed quantum superconductor-metal transition and superconducting glass April 16th, 2014

UT Arlington physicist creates new nanoparticle for cancer therapy April 16th, 2014

Targeting cancer with a triple threat: MIT chemists design nanoparticles that can deliver three cancer drugs at a time April 15th, 2014

Materials/Metamaterials

Engineers develop new materials for hydrogen storage April 15th, 2014

Industrial Nanotech, Inc. Lands First Major Order from Pemex, Mexico’s State-Owned Oil and Gas Company April 14th, 2014

Properties of Coatings Used in Electrical Insulators Modified by Iranian Researchers April 14th, 2014

Graphene Supermarket to offer HDPlas™ by Haydale, a High-Performance Graphene Material April 10th, 2014

Announcements

UT Arlington physicist creates new nanoparticle for cancer therapy April 16th, 2014

Relieving electric vehicle range anxiety with improved batteries: Lithium-sulfur batteries last longer with nanomaterial-packed cathode April 16th, 2014

Aerotech X-Y ball-screw stage for economical high performance Planar positioning April 16th, 2014

Energy Research Facility Construction Project at Brookhaven Lab Wins U.S. Energy Secretary's Achievement Award April 16th, 2014

Energy

Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity: X-rays reveal how rapidly vanishing 'charge stripes' may be behind laser-induced high-temperature superconductivity April 16th, 2014

Engineers develop new materials for hydrogen storage April 15th, 2014

A molecular approach to solar power: Switchable material could harness the power of the sun — even when it’s not shining April 15th, 2014

Scientists open door to better solar cells, superconductors and hard-drives: Research enhances understanding of materials interfaces April 14th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE