Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Stanford writes in world's smallest letters: Storing information in electron waves

This is an electron wave quantum hologram displaying the initials "SU" of Stanford University. The yellow area is a copper surface. The holes in the copper are molecules of carbon monoxide. Constantly moving electrons on the surface of the copper bounce off the carbon monoxide molecules in predictable ways. With their dual wave/particle properties, the electron waves in the purple area create inference patterns that can store readable information, in this case, SU. To store information, the researchers arrange the molecule in specific patterns with a scanning tunneling microscope.

Credit: Stanford University
This is an electron wave quantum hologram displaying the initials "SU" of Stanford University. The yellow area is a copper surface. The holes in the copper are molecules of carbon monoxide. Constantly moving electrons on the surface of the copper bounce off the carbon monoxide molecules in predictable ways. With their dual wave/particle properties, the electron waves in the purple area create inference patterns that can store readable information, in this case, SU. To store information, the researchers arrange the molecule in specific patterns with a scanning tunneling microscope.

Credit: Stanford University

Abstract:
Stanford researchers have reclaimed bragging rights for creating the world's smallest writing, a distinction the university first gained in 1985 and lost in 1990.

How small is the writing? The letters in the words are assembled from subatomic sized bits as small as 0.3 nanometers, or roughly one third of a billionth of a meter.

Stanford writes in world's smallest letters: Storing information in electron waves

Palo Alto, CA | Posted on January 31st, 2009

The researchers encoded the letters "S" and "U" (as in Stanford University) within the interference patterns formed by quantum electron waves on the surface of a sliver of copper. The wave patterns even project a tiny hologram of the data, which can be viewed with a powerful microscope.

"We miniaturized their size so drastically that we ended up with the smallest writing in history," said Hari Manoharan, the assistant professor of physics who directed the work of physics graduate student Chris Moon and other researchers.

The quest for small writing has played a role in the development of nanotechnology for 50 years, beginning decades before "nano" became a household word. During a now-legendary talk in 1959, the remarkable physicist Richard Feynman argued that there were no physical barriers preventing machines and circuitry from being shrunk drastically. He called his talk "There's Plenty of Room at the Bottom."

Feynman offered a $1,000 prize for anyone who could find a way to rewrite a page from an ordinary book in text 25,000 times smaller than the usual size (a scale at which the entire contents of the Encyclopedia Britannica would fit on the head of a pin). He held onto his money until 1985, when he mailed a check to Stanford grad student Tom Newman, who, working with electrical engineering Professor Fabian Pease, used electron beam lithography to engrave the opening page of Dickens' A Tale of Two Cities in such small print that it could be read only with an electron microscope.

That record held until 1990, when researchers at a certain computer company famously spelled out the letters IBM by arranging 35 individual xenon atoms.

Now, in a paper published online in the journal Nature Nanotechnology, the Stanford researchers describe how they have created letters 40 times smaller than the original prize-winning effort and more than four times smaller than the IBM initials. (www.youtube.com/watch?v=j3QQJEHuefQ)

Working in a vibration-proof basement lab in the Varian Physics Building, Manoharan and Moon began their writing project with a scanning tunneling microscope, a device that not only sees objects at a very small scale but also can be used to move around individual atoms. The Stanford team used it to drag single carbon monoxide molecules into a desired pattern on a copper chip the size of a fingernail.

On the two-dimensional surface of the copper, electrons zip around, behaving as both particles and waves, bouncing off the carbon monoxide molecules the way ripples in a shallow pond might interact with stones placed in the water.

The ever-moving waves interact with the molecules and with each other to form standing "interference patterns" that vary with the placement of the molecules.

By altering the arrangement of the molecules, the researchers can create different waveforms, effectively encoding information for later retrieval. To encode and read out the data at unprecedented density, the scientists have devised a new technology, Electronic Quantum Holography.

In a traditional hologram, laser light is shined on a two-dimensional image and a ghostly 3-D object appears. In the new holography, the two-dimensional "molecular holograms" are illuminated not by laser light but by the electrons that are already in the copper in great abundance. The resulting "electronic object" can be read with the scanning tunneling microscope.

Several images can be stored in the same hologram, each created at a different electron wavelength. The researchers read them separately, like stacked pages of a book. The experience, Moon said, is roughly analogous to an optical hologram that shows one object when illuminated with red light and a different object in green light.

For Manoharan, the true significance of the work lies in storing more information in less space. "How densely can you encode information on a computer chip? The assumption has been that basically the ultimate limit is when one atom represents one bit, and then there's no more room—in other words, that it's impossible to scale down below the level of atoms.

"But in this experiment we've stored some 35 bits per electron to encode each letter. And we write the letters so small that the bits that comprise them are subatomic in size. So one bit per atom is no longer the limit for information density. There's a grand new horizon below that, in the subatomic regime. Indeed, there's even more room at the bottom than we ever imagined."

In addition to Moon and Manoharan, authors of the Nature Nanotechnology paper, "Quantum Holographic Encoding in a Two-Dimensional Electron Gas," are graduate students Laila Mattos, physics; Brian Foster, electrical engineering; and Gabriel Zeltzer, applied physics.

The research was supported by the Department of Energy through SLAC National Accelerator Laboratory and the Stanford Institute for Materials and Energy Science (SIMES), the Office of Naval Research, the National Science Foundation and the Stanford-IBM Center for Probing the Nanoscale.

####

For more information, please click here

Contacts:
Dan Stober

650-721-6965

Copyright © Stanford University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Video: The World's Smallest Writing

Stanford News Service story: Reading the fine print takes on a new meaning

MANOHARAN LAB

RICHARD FEYNMAN'S 1959 NANOTECHNOLOGY TALK

NATURENEWS STORY

Related News Press

News and information

Wearable sensors that detect gas leaks April 19th, 2021

JEOL USA Welcomes New Managing Director, Hidetaka Sawada April 19th, 2021

FSU engineers improve performance of high-temperature superconductor wires April 16th, 2021

Arrowhead Pharmaceuticals to Webcast Fiscal 2021 Second Quarter Results April 16th, 2021

Videos/Movies

Fast-acting, color-changing molecular probe senses when a material is about to fail March 25th, 2021

Synthetic biology reinvents development:The research team have used synthetic biology to develop a new type of genetic design that can reproduce some of the key processes that enable creating structures in natural systems, from termite nests to the development of embryos February 8th, 2021

Quantum wave in helium dimer filmed for the first time: Collaboration between Goethe University and the University of Oklahoma December 30th, 2020

Pitt researchers create nanoscale slalom course for electrons: Professors from the Department of Physics and Astronomy have created a serpentine path for electrons November 27th, 2020

Govt.-Legislation/Regulation/Funding/Policy

Better metric for thermoelectric materials means better design strategies: New quantity helps experimentally classify dimensionality of thermoelectric materials April 15th, 2021

Better metric for thermoelectric materials means better design strategies: New quantity helps experimentally classify dimensionality of thermoelectric materials April 15th, 2021

Better solutions for making hydrogen may lie just at the surface April 9th, 2021

Antibody binding-site conserved across COVID-19 virus variants: The structural revelation could have implications as a therapeutic target in all SARS-CoV-2 variants April 9th, 2021

Academic/Education

NSF renews Rice-based NEWT Center for water treatment: Partnership primed to introduce game-changing technologies to address global needs October 15th, 2020

Matching Investment Program (MIP) Leverages $140K Empire State Development/NYSTAR Funding to SUNY Poly’s CATN2 to Enable $1.5M in Matching Commitments from Industry Partners: Investment Funds Faculty Research Related to Advanced Materials, Genomics, and Semiconductor Reliability October 18th, 2019

A Quantum Leap: $25M grant makes UC Santa Barbara home to the nation’s first NSF-funded Quantum Foundry, a center for development of materials for quantum information-based technologies September 16th, 2019

LPU signs MoU with Bruker India for Research Cooperation in Nanotechnology and Material Science September 3rd, 2019

Discoveries

New nanoscale device for spin technology: Spin waves could unlock the next generation of computer technology, a new component allows physicists to control them April 16th, 2021

New tech builds ultralow-loss integrated photonic circuits April 16th, 2021

Oregon scientists create mechanism to precisely control soundwaves in metamaterials: Theoretical modeling shows that designer materials incorporating drum-like membranes allow precise stoppage and reversal of sound pulses April 16th, 2021

FSU engineers improve performance of high-temperature superconductor wires April 16th, 2021

Announcements

Wearable sensors that detect gas leaks April 19th, 2021

JEOL USA Welcomes New Managing Director, Hidetaka Sawada April 19th, 2021

FSU engineers improve performance of high-temperature superconductor wires April 16th, 2021

Arrowhead Pharmaceuticals to Webcast Fiscal 2021 Second Quarter Results April 16th, 2021

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Controlling bubble formation on electrodes: Study finds the wettability of porous electrode surfaces is key to making efficient water-splitting or carbon-capturing systems March 26th, 2021

Building tough 3D nanomaterials with DNA: Columbia Engineers use DNA nanotechnology to create highly resilient synthetic nanoparticle-based materials that can be processed through conventional nanofabrication methods March 19th, 2021

Teamwork makes light shine ever brighter: Combined energy sources return a burst of photons from plasmonic gold nanogaps March 18th, 2021

Nanotech scientists create world's smallest origami bird March 17th, 2021

Photonics/Optics/Lasers

New tech builds ultralow-loss integrated photonic circuits April 16th, 2021

Microscope that detects individual viruses could power rapid diagnostics March 19th, 2021

Teamwork makes light shine ever brighter: Combined energy sources return a burst of photons from plasmonic gold nanogaps March 18th, 2021

Compression or strain - the material expands always the same March 10th, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project