Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > ‘Two-Faced’ Bioacids Put a New Face on Carbon Nanotube Self-Assembly

Single wall carbon nanotubes enclosed in bile acid shells self assembled into a sheaf of long ordered fibrils each composed of several nanotube rods. Treating the microscope slide with a hydrophobic compound causes the fibrils to cluster like this at specific sites, probably at defects in the hydrophobic surface. Image, 70 micrometers wide, was taken using near-infrared fluorescent microscopy. (Color added for clarity.)

Credit: NIST
Single wall carbon nanotubes enclosed in bile acid shells self assembled into a sheaf of long ordered fibrils each composed of several nanotube rods. Treating the microscope slide with a hydrophobic compound causes the fibrils to cluster like this at specific sites, probably at defects in the hydrophobic surface. Image, 70 micrometers wide, was taken using near-infrared fluorescent microscopy. (Color added for clarity.)

Credit: NIST

Abstract:
Nanotubes, the tiny honeycomb cylinders of carbon atoms only a few nanometers wide, are perhaps the signature material of modern engineering research, but actually trying to organize the atomic scale rods is notoriously like herding cats. A new study* from the National Institute of Standards and Technology (NIST) and Rice University, however, offers an inexpensive process that gets nanotubes to obediently line themselves up—that is, self-assemble—in neat rows, more like ducks.

‘Two-Faced’ Bioacids Put a New Face on Carbon Nanotube Self-Assembly

GAITHERSBURG, MD | Posted on January 13th, 2009

A broad range of emerging electronic and materials technologies take advantage of the unique physical, optical and electrical properties of carbon nanotubes, but most of them—nanoscale conductors or "nanowires," for instance—are predicated on the ability to efficiently line the nanotubes up in some organized arrangement. Unfortunately, just mixed in a solvent, the nanotubes will clump together in a black goo. They can be coated with another molecule to prevent clumping—DNA is sometimes used—but spread the mixture out and dry it and you get a random, tangled mat of nanotubes. There have been a variety of mechanical approaches to orienting carbon nanotubes on a surface (see, for example, "NIST's Stretching Exercises Shed New Light on Nanotubes," Tech Beat, Apr. 12, 2007), but a more elegant and attractive solution would be to get them to do it themselves—self assembly.

NIST researchers studying better ways to sort and purify carbon nanotubes to prepare standard samples of the material were using a bile acid** to coat the nanotubes to prevent clumping. "Bile acids," says NIST research chemist Erik Hobbie, "are biological surfactants, and like most surfactants they have a part that likes water and a part that doesn't. This is a slightly complex surfactant because instead of having a head and a tail, the usual geometry, it has two faces, one that likes water and one that doesn't." Mixed in water, such hydrophobic/hydrophilic molecules normally want to group together in hollow spheres with their hydrophobic "tails" sheltered on the inside, Hobbie explains, but the two-faced geometry of this bile acid makes it form hollow rod shapes instead. Conveniently, the hollow rods can house the rod-shaped nanotubes.

As it turns out, there's a bonus. Over the course of about a day, the bile acid shells cause the nanotubes to begin lining up, end to end, in long strands, and then the strands begin to join together in twisted filaments, like a length of twisted copper wire. The discovery is a long way from a perfect solution for ordering nanotubes, Hobbie cautions, and a lot of development remains to be done. For one thing, ideally, the bile acid shells would be removed after the nanotubes are in their ordered positions, but this has proven difficult. And the surfactant is toxic to living cells, which precludes most biomedical applications unless it is removed. On the other hand, he says, it already is an easy and extremely inexpensive technique for researchers interested in studying, for example, optical properties of carbon nanotubes. "It gives a recipe for how to create ordered, aligned arrangements of individual carbon nanotubes. You don't need to use any external magnetic or electrical fields, and you don't need to dry the tubes out in a polymer and heat it up and stretch it. You can get fairly significant regions of very nice alignment just spontaneously through this self assembly."

(For more on the purifying of carbon nanotubes, see "Spin Control: New Technique Sorts Nanotubes by Length," Tech Beat, May 13,2008.)

* E.K. Hobbie, J.A. Fagan, M.L. Becker, S.D. Hudson, N. Fakhri and M. Pasquali. Self-assembly of ordered nanowires in biological suspensions of single-wall carbon nanotubes. ACS Nano, published online Dec. 16, 2008.

** Sodium deoxycholate.

####

About NIST
Founded in 1901, NIST is a non-regulatory federal agency within the U.S. Department of Commerce. NIST's mission is to promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life.

For more information, please click here

Contacts:
Michael Baum

(301) 975-2763

Copyright © NIST

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

“Spin Control: New Technique Sorts Nanotubes by Length,” Tech Beat, May 13,2008.

Related News Press

News and information

Organometallics welcomes new editor-in-chief: Paul Chirik, Ph.D. July 22nd, 2014

The Hiden EQP Plasma Diagnostic with on-board MCA July 22nd, 2014

Iran to Hold 3rd Int'l Forum on Nanotechnology Economy July 22nd, 2014

Nanometrics Announces Upcoming Investor Events July 22nd, 2014

Self Assembly

Berkeley Lab researchers create nanoparticle thin films that self-assemble in 1 minute June 9th, 2014

Design of self-assembling protein nanomachines starts to click: A nanocage builds itself from engineered components June 5th, 2014

Molecular self-assembly scales up from nanometers to millimeters June 5th, 2014

Nano world: Where towers construct themselves: How physicists get control on the self-assembly process June 2nd, 2014

Nanotubes/Buckyballs

University of Houston researchers create new method to draw molecules from live cells: Technique using magnetic nanomaterials offers promise for diagnosis, gene therapy July 17th, 2014

3-D nanostructure could benefit nanoelectronics, gas storage: Rice U. researchers predict functional advantages of 3-D boron nitride July 15th, 2014

Researchers discover boron 'buckyball' July 14th, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Discoveries

Researchers create vaccine for dust-mite allergies Main Page Content: Vaccine reduced lung inflammation to allergens in lab and animal tests July 22nd, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

NUS scientists use low cost technique to improve properties and functions of nanomaterials: By 'drawing' micropatterns on nanomaterials using a focused laser beam, scientists could modify properties of nanomaterials for effective applications in photonic and optoelectric applicat July 22nd, 2014

Announcements

Nanometrics Announces Upcoming Investor Events July 22nd, 2014

Bruker Awarded Fourth PeakForce Tapping Patent: AFM Mode Uniquely Combines Highest Resolution Imaging and Material Property Mapping July 22nd, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE