Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Using Animation to Explore the Nanoworld

This image from an animation created by Ammon Posey, Martin Rietveld and the Hill Lab depicts a Bcl-XI protein creating a pore in a lipid vesicle.
This image from an animation created by Ammon Posey, Martin Rietveld and the Hill Lab depicts a Bcl-XI protein creating a pore in a lipid vesicle.

Abstract:
Tiny self-assembling metal cubes dance across the screen in a video posted on the Web site of the Johns Hopkins Institute for NanoBioTechnology. You could read a book or at least several chapters on the principles behind how these microcubes build themselves up from microscopic metallic sheets cut by lasers. Or you could watch a one-minute animated video that tells their fantastic story.

Using Animation to Explore the Nanoworld

Baltimore, MD | Posted on December 16th, 2008

The INBT video of the self-assembling cubes is the result of the independent study course Animation in Nanotechnology and Medicine and was produced under the guidance of INBT animation/Web director Martin Rietveld, who shares his skills and experience in 2-D/3-D animation with students from throughout Johns Hopkins who want to learn to use this lively medium.

INBT's animation studio and the independent study course have attracted students from the basic sciences, engineering, the School of Medicine's Department of Art as Applied to Medicine and the Krieger School's Writing Seminars, to name a few. Some students understand the science; others are skilled in illustration or other types of visualization. "My job is to try to guide these forces into something that actually produces a movie," Rietveld says.

Students who sign up for the course should be aware of the time commitment involved in order to produce a film as well executed as the current productions, Rietveld says. Presently, there are two animated movies on the INBT Web site demonstrating the research of INBT-affiliated faculty members. One explains the self-assembling cubes used in the research of David Gracias, assistant professor of chemical and biomolecular engineering in the Whiting School of Engineering, and the other shows the interaction between a protein and a lipid bilayer, based on the work of Blake Hill, associate professor of biology in the Krieger School of Arts and Sciences.

Rietveld recommends that before students start the course, they should be somewhat familiar with animation software. They learn about the science they intend to animate by interviewing the scientists and engineers engaged in the research. Students then shift their attention to production, storyboarding and animation. Eventually, they'll do post-production and audio work. Projects are completed using INBT's computers and software. For specific tasks, such as recording video and audio, INBT collaborates with the Digital Media Center and the Center for Educational Resources.

"It can take at least two semesters, and students in the course are expected to put in at least 10 hours per week to complete a project," Rietveld says. The 3-credit independent study course does not necessarily adhere to a fixed schedule, so students need to have a lot of self-motivation, Rietveld adds.

"It takes a long time to produce something of quality, [and] it is difficult to achieve this kind of artistic integrity while maintaining scientific accuracy," Rietveld says, "but that is why working in this kind of animation is challenging and fun."

To see David Gracias' self-assembling cubes, go to: inbt.jhu.edu/animation/self-assembling-cubes.php.

To see Blake Hill's channel-forming protein, go to: inbt.jhu.edu/animation/channel-forming-protein.php.

####

About Institute for NanoBioTechnology (INBT)
The Institute for NanoBioTechnology at Johns Hopkins University brings together internationally renowned expertise in medicine, engineering, the sciences and public health to foster the next wave of nanobiotechnology innovation. Faculty members affiliated with INBT are members of the Johns Hopkins Krieger School of Arts and Sciences, Whiting School of Engineering, School of Medicine, Bloomberg School of Public Health and Applied Physics Laboratory.

For more information, please click here

Contacts:
Martin Rietveld

Copyright © Institute for NanoBioTechnology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers find new way to control light with electric fields May 25th, 2017

Nanometrics Announces Retirement Plans of CEO Timothy Stultz: Dr. Stultz to Continue as Director May 25th, 2017

Nanomechanics, Inc. to Exhibit at the SEM Conference: Nanoindentation experts will attend and exhibit their instruments at the Conference and Exposition on Experimental and Applied Mechanics in Indianapolis May 25th, 2017

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Videos/Movies

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Gas gives laser-induced graphene super properties: Rice University study shows inexpensive material can be superhydrophilic or superhydrophobic May 15th, 2017

Wood filter removes toxic dye from water April 21st, 2017

Making Batteries From Waste Glass Bottles: UCR researchers are turning glass bottles into high performance lithium-ion batteries for electric vehicles and personal electronics April 19th, 2017

Self Assembly

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

Nanotubes that build themselves April 14th, 2017

Nanocages for gold particles: what is happening inside? March 16th, 2017

Most Complex Nanoparticle Crystal Ever Made by Design: Possible applications include controlling light, capturing pollutants, delivering therapeutics March 2nd, 2017

Nanomedicine

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

The brighter side of twisted polymers: Conjugated polymers designed with a twist produce tiny, brightly fluorescent particles with broad applications May 16th, 2017

Announcements

Researchers find new way to control light with electric fields May 25th, 2017

Nanometrics Announces Retirement Plans of CEO Timothy Stultz: Dr. Stultz to Continue as Director May 25th, 2017

Nanomechanics, Inc. to Exhibit at the SEM Conference: Nanoindentation experts will attend and exhibit their instruments at the Conference and Exposition on Experimental and Applied Mechanics in Indianapolis May 25th, 2017

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project