Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Chemical engineers use carbon nanotubes to monitor chemotherapy, detect toxins at the single-molecule level

Image / Strano Laboratory
This image shows the cell after hydrogen peroxide is added. The change in fluorescence provides a "fingerprint" that allows different molecules to be identified.
Image / Strano Laboratory
This image shows the cell after hydrogen peroxide is added. The change in fluorescence provides a "fingerprint" that allows different molecules to be identified.

Abstract:
Nanotubes sniff out cancer agents in living cells

Chemical engineers use carbon nanotubes to monitor chemotherapy, detect toxins at the single-molecule level

Cambridge, MA | Posted on December 15th, 2008

MIT engineers have developed carbon nanotubes into sensors for cancer drugs and other DNA-damaging agents inside living cells.

The sensors, made of carbon nanotubes wrapped in DNA, can detect chemotherapy drugs such as cisplatin as well as environmental toxins and free radicals that damage DNA.

"We've made a sensor that can be placed in living cells, healthy or malignant, and actually detect several different classes of molecules that damage DNA," said Michael Strano, associate professor of chemical engineering and senior author of a paper on the work appearing in the Dec. 14 online edition of Nature Nanotechnology.

Such sensors could be used to monitor chemotherapy patients to ensure the drugs are effectively battling tumors. Many chemotherapy drugs are very powerful DNA disruptors and can cause serious side effects, so it is important to make sure that the drugs are reaching their intended targets.

"You could figure out not only where the drugs are, but whether a drug is active or not," said Daniel Heller, a graduate student in chemical engineering and lead author of the paper.

The sensor can detect DNA-alkylating agents, a class that includes cisplatin, and oxidizing agents such as hydrogen peroxide and hydroxyl radicals.

Using the sensors, researchers can monitor living cells over an extended period of time. The sensor can pinpoint the exact location of molecules inside cells, and for one agent, hydrogen peroxide, it can detect a single molecule.

The new technology takes advantage of the fact that carbon nanotubes fluoresce in near-infrared light. Human tissue does not, which makes it easier to see the nanotubes light up.

Each nanotube is coated with DNA, which binds to DNA-damaging agents present in the cell. That interaction between the DNA and DNA disruptor changes the intensity and/or wavelength of the fluorescent light emitted by the nanotube. The agents produce different signatures that can be used to identify them.

"We can differentiate between different types of molecules depending on how they interact," Strano said.

Because they are coated in DNA, these nanotube sensors are safe for injection in living cells. (Nanotubes can come in many different lengths and can be coated with different materials, which influences whether they are safe or toxic, Strano said.)

In future studies, the researchers plan to use the sensors to study the effects of various antioxidants, such as the compounds in green tea, and learn how to more effectively use toxic chemotherapy drugs.

Other authors of the paper include MIT graduate student Hong Jin of the Department of Chemical Engineering. Researchers from the University of Illinois at Urbana-Champaign also contributed to the work, which was funded by the National Science Foundation.

####

About MIT
The mission of MIT is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the 21st century.

For more information, please click here

Contacts:
Elizabeth A. Thomson
MIT News Office
Phone: 617-258-5402

Copyright © MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Visualizing How Radiation Bombardment Boosts Superconductivity: Atomic-level flyovers show how impact sites of high-energy ions pin potentially disruptive vortices to keep high-current superconductivity flowing May 23rd, 2015

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Nanotubes/Buckyballs/Fullerenes

Researchers develop new way to manufacture nanofibers May 21st, 2015

Sandia researchers first to measure thermoelectric behavior by 'Tinkertoy' materials May 20th, 2015

Cotton fibres instead of carbon nanotubes May 9th, 2015

A better way to build DNA scaffolds: McGill researchers devise new technique to produce long, custom-designed DNA strands May 6th, 2015

Nanomedicine

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Researchers develop new way to manufacture nanofibers May 21st, 2015

Effective Nano-Micelles Designed in Iran to Treat Cancer May 20th, 2015

Nature inspires first artificial molecular pump: Simple design mimics pumping mechanism of life-sustaining proteins found in living cells May 19th, 2015

Discoveries

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Visualizing How Radiation Bombardment Boosts Superconductivity: Atomic-level flyovers show how impact sites of high-energy ions pin potentially disruptive vortices to keep high-current superconductivity flowing May 23rd, 2015

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Announcements

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Visualizing How Radiation Bombardment Boosts Superconductivity: Atomic-level flyovers show how impact sites of high-energy ions pin potentially disruptive vortices to keep high-current superconductivity flowing May 23rd, 2015

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project