Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > News > Carbon Nanotube Clothing Could Take Charge in an Emergency [Slide Show]

December 12th, 2008

Carbon Nanotube Clothing Could Take Charge in an Emergency [Slide Show]

Abstract:
A soldier is badly wounded on the battlefield in Afghanistan or Iraq by a roadside explosive. As he lies beside his vehicle, unable to reach his radio to contact his unit on his location and condition, blood from the wound seeps into his shirt. Luckily, its fibers are coated with cylindrical, nanosize carbon molecules that contain antibodies able to detect the presence of albumin, a protein common in blood. The shirt senses that its wearer is bleeding and sends a signal through the shirt's carbon nanotubes (1,000 times more conductive than copper) that activates an emergency radio-frequency beacon on the soldier's belt. This distress call is picked up by a nearby patrol that rushes to the aid of their wounded comrade.

This may be the stuff of science fiction, but ongoing development of fabrics coated with carbon nanotubes and other nanoscale substances could someday make such smart clothing a reality, says Nicholas Kotov, an engineering professor at the University of Michigan at Ann Arbor. Kotov and several colleagues have taken the first step of creating carbon nanotube-coated cotton fibers woven into a swatch of fabric a few square inches in size, they report this week in the American Chemical Society journal, Nano Letters

Source:
sciam.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Scientists reveal breakthrough in optical fiber communications December 21st, 2014

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Announcements

Scientists reveal breakthrough in optical fiber communications December 21st, 2014

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Military

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

UCLA engineers first to detect and measure individual DNA molecules using smartphone microscope December 15th, 2014

Nanoshaping method points to future manufacturing technology December 11th, 2014

Stacking two-dimensional materials may lower cost of semiconductor devices December 11th, 2014

Textiles/Clothing

Simple, Biocompatible Method Developed for Production of Antibacterial Cotton Fabrics December 1st, 2014

Australian startup creates world’s first 100% cotton hydrophobic T-Shirts November 26th, 2014

New Method for Production of Stable Antibacterial Fabrics without Color Change November 18th, 2014

Total Nanofiber Solutions Company FibeRio® Launches The Fiber Engine® FX Series Systems with 10X Increase in Output November 18th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE