Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > New laser method reproduces art masterworks to protein patterns: Canadian scientists reproduce Girl with a Pearl Earring with protein patterning techn

The research team reproduced the masterwork Girl with a Pearl Earring in the miniature dimension of 200 microns wide or about the thickness of two hairs.

Credit: Santiago Costantino, Université de Montréal
The research team reproduced the masterwork Girl with a Pearl Earring in the miniature dimension of 200 microns wide or about the thickness of two hairs.

Credit: Santiago Costantino, Université de Montréal

Abstract:
Canadian researchers have created a new protein patterning technique that's enabled them to reproduce complex cellular environments and a miniature version of a masterpiece painting. According to a new study published in the journal Lab on a Chip, scientists from Université de Montréal, the Maisonneuve-Rosemont Hospital Research Centre, McGill University and the Montreal Neurological Institute have developed a laser technology that can mimic the protein patterns that surround cells in vivo and that could lead to great advances in neuroscience.

New laser method reproduces art masterworks to protein patterns: Canadian scientists reproduce Girl with a Pearl Earring with protein patterning techn

Montreal, Canada | Posted on November 11th, 2008

To illustrate the precision of their protein patterning technique, the research team reproduced a masterwork of Dutch painter Johannes Vermeer, specifically Girl with a Pearl Earring, in the miniature dimension of 200 microns wide or about the thickness of two hairs. The researchers also used their novel technology to replicate the brain's complex cellular environment. It's a major discovery, since the new laser technology can encourage and guide the growth of finicky nerve cells.

"We have created a system that can fabricate complex methods to grow cells," says Santiago Costantino, the study's lead author and a scientist at the Université de Montréal and Maisonneuve-Rosemont Hospital Research Centre.

"We see this technique as being very relevant to neuroscience and immunology research. With this system, we laid down a chemical gradient to guide the growth of nerve fiber, which is very useful in studying nerve damage and repair."

Flexible and precise

Using laser-assisted protein adsorption by photobleaching (LAPAP), the scientific team bound fluorescently-tagged molecules to a glass slides and created patterns of proteins similar to those of the human body. They then demonstrated how flexible and precise this technique could be by reproducing a fluorescent micro version of Girl With a Pearl Earring.

"The flexibility, precision and ease of this technique will hopefully lead to increased access in protein patterning, which could lead to major advances in science," says Dr. Costantino, who is also a member of the BioFemtoVision Canadian Research Group, which includes researchers from the Université de Montréal and the Institut National de la Recherche Scientifique who are working on developing new laser technologies for vision science.

"Our next goal is to extend laser-assisted protein adsorption by photobleaching to fabricate more complex protein combinations and distributions," adds Dr. Costantino. "We want to improve our imitation of the chemical environment found in the early stages of developing organisms."

About the study:

The article, "Patterning protein concentration using laser-assisted adsorption by photobleaching, LAPAP," published in Lab on a Chip, was authored by Santiago Costantino and Jonathan M. Bélisle of the Université de Montréal and Maisonneuve-Rosemont Hospital Research Centre, as well as James P. Correia, Paul W. Wiseman and Timothy E. Kennedy of McGill University and the Montreal Neurological Institute.

Partners in research:

This study was funded through grants from the Natural Science and Engineering Council of Canada, the Fonds québécois de la recherche sur la nature et les technologies, Canadian Institutes of Health Research and the Fonds de la recherche en santé du Québec.

On the Web

About Lab on a Chip: www.rsc.org/Publishing/Journals/LC/article.asp?doi=b813897d

About the Université de Montréal: www.umontreal.ca/english/index.htm

About the Maisonneuve-Rosemont Hospital Research Centre:
www.recherche.maisonneuve-rosemont.org/fr-ca/accueil.html

About McGill University: www.mcgill.ca

About the Montreal Neurological Institute and Hospital: www.mni.mcgill.ca

####

For more information, please click here

Contacts:
Sylvain-Jacques Desjardins

514-343-7593

Copyright © University of Montreal

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Oxford Instruments Asylum Research Introduces the MFP-3D InfinityTM AFM Featuring Powerful New Capabilities and Stunning High Performance April 18th, 2014

Conductive Inks: booming to $2.8 billion by 2024 April 17th, 2014

Discoveries

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Thinnest feasible membrane produced April 17th, 2014

More effective kidney stone treatment, from the macroscopic to the nanoscale April 17th, 2014

Announcements

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Oxford Instruments Asylum Research Introduces the MFP-3D InfinityTM AFM Featuring Powerful New Capabilities and Stunning High Performance April 18th, 2014

Transparent Conductive Films and Sensors Are Hot Segments in Printed Electronics: Start-ups in these fields show above-average momentum, while companies working on emissive displays such as OLED are fading, Lux Research says April 17th, 2014

Human Interest/Art

Harry Potter-style invisibility cloaks: A real possibility next Christmas? Forget socks and shaving foam, the big kids of tomorrow want an invisible cloak for Christmas December 19th, 2013

Chicago Awareness Organization First Not-for-Profit to Sponsor Dog Training to Detect Ovarian Cancer Odorants December 12th, 2013

ZEISS Microscopes used to create images for Art Exhibit at Midway Airport: Art of Science: Images from the Institute for Genomic Biology October 25th, 2013

New potential for touch screens found at your fingertips September 17th, 2013

Photonics/Optics/Lasers

High-temperature plasmonics eyed for solar, computer innovation April 17th, 2014

Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity: X-rays reveal how rapidly vanishing 'charge stripes' may be behind laser-induced high-temperature superconductivity April 16th, 2014

Lumerical files a provisional patent that extends the standard eigenmode expansion propagation technique to better address waveguide component design. Lumerical’s EME propagation tool will address a wide set of waveguide applications in silicon photonics and integrated optics April 16th, 2014

Near-field Nanophotonics Workshop in Boston April 14th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE