Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > New laser method reproduces art masterworks to protein patterns: Canadian scientists reproduce Girl with a Pearl Earring with protein patterning techn

The research team reproduced the masterwork Girl with a Pearl Earring in the miniature dimension of 200 microns wide or about the thickness of two hairs.

Credit: Santiago Costantino, Université de Montréal
The research team reproduced the masterwork Girl with a Pearl Earring in the miniature dimension of 200 microns wide or about the thickness of two hairs.

Credit: Santiago Costantino, Université de Montréal

Abstract:
Canadian researchers have created a new protein patterning technique that's enabled them to reproduce complex cellular environments and a miniature version of a masterpiece painting. According to a new study published in the journal Lab on a Chip, scientists from Université de Montréal, the Maisonneuve-Rosemont Hospital Research Centre, McGill University and the Montreal Neurological Institute have developed a laser technology that can mimic the protein patterns that surround cells in vivo and that could lead to great advances in neuroscience.

New laser method reproduces art masterworks to protein patterns: Canadian scientists reproduce Girl with a Pearl Earring with protein patterning techn

Montreal, Canada | Posted on November 11th, 2008

To illustrate the precision of their protein patterning technique, the research team reproduced a masterwork of Dutch painter Johannes Vermeer, specifically Girl with a Pearl Earring, in the miniature dimension of 200 microns wide or about the thickness of two hairs. The researchers also used their novel technology to replicate the brain's complex cellular environment. It's a major discovery, since the new laser technology can encourage and guide the growth of finicky nerve cells.

"We have created a system that can fabricate complex methods to grow cells," says Santiago Costantino, the study's lead author and a scientist at the Université de Montréal and Maisonneuve-Rosemont Hospital Research Centre.

"We see this technique as being very relevant to neuroscience and immunology research. With this system, we laid down a chemical gradient to guide the growth of nerve fiber, which is very useful in studying nerve damage and repair."

Flexible and precise

Using laser-assisted protein adsorption by photobleaching (LAPAP), the scientific team bound fluorescently-tagged molecules to a glass slides and created patterns of proteins similar to those of the human body. They then demonstrated how flexible and precise this technique could be by reproducing a fluorescent micro version of Girl With a Pearl Earring.

"The flexibility, precision and ease of this technique will hopefully lead to increased access in protein patterning, which could lead to major advances in science," says Dr. Costantino, who is also a member of the BioFemtoVision Canadian Research Group, which includes researchers from the Université de Montréal and the Institut National de la Recherche Scientifique who are working on developing new laser technologies for vision science.

"Our next goal is to extend laser-assisted protein adsorption by photobleaching to fabricate more complex protein combinations and distributions," adds Dr. Costantino. "We want to improve our imitation of the chemical environment found in the early stages of developing organisms."

About the study:

The article, "Patterning protein concentration using laser-assisted adsorption by photobleaching, LAPAP," published in Lab on a Chip, was authored by Santiago Costantino and Jonathan M. Bélisle of the Université de Montréal and Maisonneuve-Rosemont Hospital Research Centre, as well as James P. Correia, Paul W. Wiseman and Timothy E. Kennedy of McGill University and the Montreal Neurological Institute.

Partners in research:

This study was funded through grants from the Natural Science and Engineering Council of Canada, the Fonds québécois de la recherche sur la nature et les technologies, Canadian Institutes of Health Research and the Fonds de la recherche en santé du Québec.

On the Web

About Lab on a Chip: www.rsc.org/Publishing/Journals/LC/article.asp?doi=b813897d

About the Université de Montréal: www.umontreal.ca/english/index.htm

About the Maisonneuve-Rosemont Hospital Research Centre:
www.recherche.maisonneuve-rosemont.org/fr-ca/accueil.html

About McGill University: www.mcgill.ca

About the Montreal Neurological Institute and Hospital: www.mni.mcgill.ca

####

For more information, please click here

Contacts:
Sylvain-Jacques Desjardins

514-343-7593

Copyright © University of Montreal

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Quantum states in a nano-object manipulated using a mechanical system August 3rd, 2015

Nanoparticles used to breach mucus barrier in lungs: Proof-of-concept study conducted in mice a key step toward better treatments for lung diseases August 3rd, 2015

Promising Step Taken in Iran towards Treatment of Spinal Cord Injury August 3rd, 2015

Diagnosis of Salmonella Bacterium-Caused Food Poisoning by Biosensors August 3rd, 2015

Discoveries

Quantum states in a nano-object manipulated using a mechanical system August 3rd, 2015

Nanoparticles used to breach mucus barrier in lungs: Proof-of-concept study conducted in mice a key step toward better treatments for lung diseases August 3rd, 2015

Promising Step Taken in Iran towards Treatment of Spinal Cord Injury August 3rd, 2015

Diagnosis of Salmonella Bacterium-Caused Food Poisoning by Biosensors August 3rd, 2015

Announcements

Quantum states in a nano-object manipulated using a mechanical system August 3rd, 2015

Nanoparticles used to breach mucus barrier in lungs: Proof-of-concept study conducted in mice a key step toward better treatments for lung diseases August 3rd, 2015

Promising Step Taken in Iran towards Treatment of Spinal Cord Injury August 3rd, 2015

Diagnosis of Salmonella Bacterium-Caused Food Poisoning by Biosensors August 3rd, 2015

Human Interest/Art

Kalam: versatility personified August 1st, 2015

Pakistani Students Who Survived Terror Attack to Attend Weeklong “NanoDiscovery Institute” at SUNY Poly CNSE in Albany July 29th, 2015

Renishaw's inVia confocal Raman microscope system is being used in conservation activities at the Rijksmuseum in Amsterdam, the Netherlands June 16th, 2015

New sensing tech could help detect diseases, fraudulent art, chemical weapons June 1st, 2015

Photonics/Optics/Lasers

MIPT researchers clear the way for fast plasmonic chips August 3rd, 2015

Heating and cooling with light leads to ultrafast DNA diagnostics July 31st, 2015

IEEE Photonics Society Applauds Rochester on Integrated Photonics Institute Win July 30th, 2015

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project