Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > A new mass sensor to weight atoms with an unprecedented resolution

Abstract:
A group of researchers led by Adrian Bachtold of the CIN2 laboratory in Spain has developed an ultrasensitive mass sensor, which can measure tiny amounts of mass with atomic precision, and with an unprecedented resolution to date.

A new mass sensor to weight atoms with an unprecedented resolution

Posted on October 29th, 2008

The device is based on a carbon nanotube of 1 nanometer diameter which is clamped at both ends to two electrodes. It works as an electromechanical resonator characterized by a mechanical resonance frequency as if it was a string on a guitar. When atoms are directed towards the nanotube, they hit and stick to its surface. This increases the nanotube mass, thereby reducing its resonance frequency: this slowing of the vibration is used to quantify the mass of the atoms.

At room temperature, the nanotube resonator has a resolution of 25 zeptograms (zg) but cooling the nanotube down to 5 Kelvin (268.15 degrees C below zero) the resolution improves to 1.4 zeptograms. A zeptogram equals 10 -21 grams or, which is the same, a thousandth part of one millionth of one millionth of one millionth of a gram.

A sensor of this resolution would allow the detection of tiny amounts of mass such as the mass of proteins or other molecules with atomic resolution. Also, it could be used to monitor nuclear reactions in individual atoms, or biological molecules in chemical reactions.

The researchers tested the device by measuring the mass of evaporated chromium atoms, and the performance, as explained in an article published in the journal Nanoletters, is exceptional. The other members of the team are Benjamin Lassagne and Daniel Garcia, both of CIN2, and Albert Aguasca, from the Universitat Politčcnica de Catalunya.

A remaining challenge

One of the challenges of nanotechnology and nanomechanics is having a mass spectrometer working at subatomic level. The maximum resolution had been achieved with some silicon resonators (with a resolution of about 7 to zeptograms temperature of 4.2 Kelvin). Now, the work of Bachtold and co-workers has substantially increased that resolution through the use of carbon nanotubes.

The mass of a nanotube is very low, barely a few atograms (which is a millionth of one millionth of a microgram, or 10 -18 g), so that any tiny amount of added mass will be detected. In addition, the nanotubes are mechanically ultrarigid, which makes them excellent candidates to be used as mechanical resonators.

Now, the team of Bachtold is improving the measurement set up and hopes to achieve in the near future the resolution of 0.001 zg, the mass of one nucleus. The researchers will then place proteins on the nanotube and monitor the change of the mass during chemical reactions (when a hydrogen atom is released from the protein, for instance).

Nanotechnology has been advancing rapidly in the few last years. Even so, there remain many challenges ahead, and one of them is a mass spectrometer to allow work at that level, with small biological molecules or atoms.

The development of the CIN2 team has coincided in time with others of similar characteristics, both from the U.S.A. One, at the Technical University of California (Caltech) and the other at the University of California (Berkeley). Both groups have developed mass sensors based on carbon nanotubes, with minor differences between the methods used. The fact was recently highlighted in the journal Nature Nanotechnology.

####

About CIN2 (Research Center for Nanoscience and Nanotechnology)
The CIN2 (Research Center for Nanoscience and Nanotechnology), is a joint centre belonging to the Spanish National Council for Scientific Research (CSIC) and the Nanotechnology Catalonian Institute (ICN).

For more information, please click here

Copyright © CIN2 (Research Center for Nanoscience and Nanotechnology)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project