Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Hopkins Engineer, Chemist Examine Impact of Carbon Nanotubes in Aquatic Environments

Oxidized carbon nanotubes with sorbates. Credit: Ball Lab / JHU
Oxidized carbon nanotubes with sorbates. Credit: Ball Lab / JHU

Abstract:
Carbon nanotubes (CNTs)—which resemble tiny rolls of chicken wire—are used in electronics, optics and other products because of their unusual strength and electrical conductivity. CNT's are also being used for drug delivery. But an engineer and a chemist affiliated with the Johns Hopkins Institute for NanoBioTechnology have teamed up to study the ways that nanotubes could transport harmful toxins in aquatic environments.

Hopkins Engineer, Chemist Examine Impact of Carbon Nanotubes in Aquatic Environments

Baltimore, MD | Posted on October 28th, 2008

William Ball, professor of environmental engineering in the Whiting School of Engineering, and Howard Fairbrother, professor of chemistry in the Krieger School of Arts and Sciences, received two separate grants from the National Science Foundation and the Environmental Protection Agency to study the effects of surface oxides on the behavior of carbon nanotubes and their influence on the mobility of contaminants in aquatic environments.

"When people or animals drink—or otherwise process—water that has been contaminated by CNTs, they may receive the toxins as well as the CNTs," says Ball. "Retention and toxicity of the CNT-bound chemicals is still unclear, but the retained chemicals and/or the CNTs themselves may cause harm and can also propagate further up the food chain."

The team will study how the surface chemistry of CNTs-namely the oxygen-containing functional groups (surface oxides) on the nanotubes—influence the material's ability to grab onto, transport, and release organic and inorganic pollutants and metals in lakes, streams and oceans, making the carbon nanotubes behave like a "Trojan Horse."

Part of the study will rely on models based on what is already known about the interaction of oxidized CNT surfaces and toxins. In a study published in Environmental Science and Technology in March 2008, Ball and Fairbrother investigated how surface oxides influenced the adsorption of Naphthalene on multi-walled carbon nanotubes (See reference below). Naphthalene is a common ingredient in mothballs, and exposure to high concentrations of the chemical can damage or destroy red blood cells.

In the experimental phase, the team will oxidize fresh CNTs with nitric acid to mimic the modifications used to purify and functionalize this carbon-based material. Next, the CNTs will be added to columns of silica or sand, and solutions containing organic compounds or metal ions will be flowed through. The liquid that flows out the other end of the column will be collected and analyzed. Testing will occur under different pHs and concentrations of dissolved organic matter, to represent aquatic environments.

These results, Ball says, will be further analyzed in light of appropriate theoretical models, as well as to experimental data about the sorption properties of the carbon nanotubes for various chemicals and the surface-surface interactions among and between CNTs and other materials.

To learn more about the participating Labs visit the profiles in the INBT Faculty Finder.

* Ball Lab
* Fairbrother Lab

Reference
Influence of Surface Oxides on the Adsorption of Naphthalene onto Multiwalled Carbon Nanotubes. Cho, Hyun-Hee, Smith, Billy A., Wnuk, Joshua D., Fairbrother, D. Howard, and Ball, William P. Environ. Sci. Technol., 42, 8, 2899 - 2905, 2008, 10.1021/es702363e

Story by Mary Spiro

####

About Institute for NanoBioTechnology (INBT)
The Institute for NanoBioTechnology at Johns Hopkins University is revolutionizing health care by bringing together internationally renowned expertise in medicine, engineering, the sciences, and public health to create new knowledge and groundbreaking technologies.

INBT programs in research, education, outreach, and technology transfer are designed to foster the next wave of nanobiotechnology innovation.

For more information, please click here

Contacts:
* Institute for NanoBioTechnology
214 Maryland Hall
3400 North Charles Street
Baltimore, MD 21218

* Email:
* Phone: (410) 516-3423
* Fax: (410) 516-2355

Mary Spiro

Copyright © Institute for NanoBioTechnology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Nanotubes/Buckyballs/Fullerenes

Nanotubes' 'stuffing' as is: A scientist from the Lomonosov Moscow State University studied the types of carbon nanotubes' 'stuffing' June 2nd, 2016

Programmable materials find strength in molecular repetition May 23rd, 2016

Nanotubes are beacons in cancer-imaging technique: Rice University researchers use spectral triangulation to pinpoint location of tumors May 21st, 2016

Unveiling the electron's motion in a carbon nanocoil: Development of a precise resistivity measurement system for quasi-one-dimensional nanomaterials using a focused ion beam May 16th, 2016

Announcements

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Environment

The use of nanoparticles and bioremediation to decontaminate polluted soils June 14th, 2016

UQ research accelerates next-generation ultra-precise sensing technology June 10th, 2016

VentureLab nanotechnology startup wins TechConnect Innovation Award June 2nd, 2016

The next generation of carbon monoxide nanosensors May 26th, 2016

Safety-Nanoparticles/Risk management

UK NANOSAFETY GROUP publishes 2nd Edition of guidance to support safe working with nanomaterials May 30th, 2016

PETA science group publishes a review on pulmonary effects of nanomaterials: Archives of Toxicology publishes a review of scientific studies on fibrotic potential of nanomaterials May 26th, 2016

Common nanoparticle has subtle effects on oxidative stress genes May 11th, 2016

Non-animal approach to predict impact of nanomaterials on human lung published Archives of Toxicology publishes workshop recommendations May 2nd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic