Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > News > Tiny Nanotech “Diving Boards” Test the Killing Power of Antibiotics

October 13th, 2008

Tiny Nanotech “Diving Boards” Test the Killing Power of Antibiotics

Abstract:
Researchers have invented a new tool in the fight against antibiotic-resistant "superbugs" that are becoming a growing health threat worldwide: a nanoscale device that shows instantly whether new drugs can kill the bacteria. The device uses tiny springboards coated in bacteria proteins, which are then exposed to an antibiotic; if the drug effectively binds to the proteins, the springboard bends.

[D]rug resistant superbugs are becoming more common and increasingly causing problems outside of hospitals. So [lead researcher Rachel] McKendry and colleagues want to find speedier ways to screen new potential antibiotics. They say their new nanoscale device can help, revealing in minutes whether an antibiotic is potent enough to kill bacteria [New Scientist]. Typically, researchers test new antibiotics by growing a bacterial culture and then applying the antibiotics, but it can take days for the cultures to grow.

The new nanotech device, described in Nature Nanotechnology [subscription required], is made of an array of tiny silicon slivers that jut out like diving boards from a stiff surface. In the study, researchers coated the slivers with proteins from either a conventional or a drug-resistant strain of Enterococci bacteria, and then exposed the device to antibiotics. Only the springboards coated with proteins from the conventional bacteria bent.

Source:
discovermagazine.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Blog sites

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Peter Diamandis Thinks Nanotech Will Interface With Human Minds September 1st, 2016

Graphene-Enabled Paper Makes for Flexible Display August 1st, 2016

Marrying superconductors, lasers, and Bose-Einstein condensates: Chapman University Institute for Quantum Studies (IQS) member Yutaka Shikano, Ph.D., recently had research published in Scientific Reports June 20th, 2016

Nanomedicine

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Learning with light: New system allows optical “deep learning”: Neural networks could be implemented more quickly using new photonic technology June 12th, 2017

Mussels add muscle to biocompatible fibers: Rice University chemists develop hydrogel strings using compound found in sea creatures June 9th, 2017

Making vessels leaky on demand could aid drug delivery:Rice University scientists use magnets and nanoparticles to open, close gaps in blood vessels June 8th, 2017

Discoveries

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Announcements

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project