Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Cadence Custom Lithography Technology Addresses 22-Nanometer Semiconductor Manufacturing: Custom Source Mask Optimization Solution Delivers Superior P

Abstract:
Cadence Design Systems, Inc. (NASDAQ: CDNS), the leader in global electronic design innovation, today announced the availability of software that optimizes custom lithographic source illumination, a new capability in its integrated source mask optimization (SMO) technology family for IC manufacturing at 22 nanometers and beyond. Optimized custom litho source illumination delivers the superior process window and improved two-dimensional image fidelity required for 22-nanometer semiconductor manufacturing.

Cadence Custom Lithography Technology Addresses 22-Nanometer Semiconductor Manufacturing: Custom Source Mask Optimization Solution Delivers Superior P

San Jose, CA | Posted on October 8th, 2008

Cadence® collaborated with Tessera Technologies, Inc. (NASDAQ: TSRA) to incorporate the custom source illumination manufacturing awareness into its SMO software technology family. The new capability is integrated into the Cadence resolution enhancement technology (RET) flow for both single- and double-patterning lithography, and it delivers exceptional ease of use and automation to accelerate both technology development and production ramps.

"The flexibility to take full advantage of diffractive optical elements is essential to achieving high yields at the 22nm node," said Michael Bereziuk, executive vice president of Imaging & Optics at Tessera. "Tessera is pleased to work with Cadence to provide solutions to the SMO challenge that utilize our full design expertise and ten years of experience with off-axis illumination."

The collaboration between Cadence and Tessera focuses on Tessera's DigitalOptics™ technologies, which enable one of the broadest range of control available today, providing conventional, gray-tone, and free-form litho source illumination. Effective source mask optimization requires that the full degrees of freedom and actual constraints of the illumination design are incorporated into the design algorithms. Incorporating these more advanced models into the Cadence SMO software provides powerful new capabilities to the entire user community.

At 22 nanometers and below, conventional computational lithography techniques such as model-based OPC and the existing range of RETs are not sufficient to deliver the required silicon pattern fidelity. The Cadence source mask optimization technology enables more accurate computational lithography assessments and tradeoffs that improve pattern fidelity and enable increased product yield. This is accomplished by taking into account the RET/OPC recipes and models, mask manufacturability rules, polarization pattern in the lens pupil, Jones matrix of the projection lens, optical parameters of the resist stack, resist diffusion, and other key factors.

A key differentiation of the Cadence technology is its ability to optimize the litho source illumination based on the printability of two-dimensional layout structures through a process window, rather than just through critical dimension (CD) requirements of the design. The Cadence source mask optimization solution is also applicable to both conventional and free-form illumination patterns.

"We're going beyond traditional DFM to a co-optimized design and manufacturing approach with this collaboration," said Dr. Dipu Pramanik, vice president of silicon signoff and optimization at Cadence. "This collaboration with Tessera will help our customers quickly achieve their computational lithography implementation and technology entitlement goals thereby reducing their overall cost of ownership."

####

About Cadence Design Systems, Inc.
Cadence enables global electronic design innovation and plays an essential role in the creation of today's integrated circuits and electronics. Customers use Cadence software and hardware, methodologies, and services to design and verify advanced semiconductors, consumer electronics, networking and telecommunications equipment, and computer systems. Cadence reported 2007 revenues of approximately $1.6 billion, and has approximately 5,100 employees. The company is headquartered in San Jose, Calif., with sales offices, design centers, and research facilities around the world to serve the global electronics industry.

Cadence is a registered trademark and the Cadence logo is a trademark of Cadence Design Systems, Inc. in the United States and other countries. DigitalOptics is a trademark of Tessera Inc. All other trademarks are the property of their respective owners.

For more information, please click here

Contacts:
Dan Holden
Cadence Design Systems, Inc.
408-944-7457

Copyright © Marketwire

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

First Observation of Electronic Structure in Ag-Rh Alloy Nanoparticles Having Hydrogen Absorbing: Storage Property –Attempting to solve the mystery of why Ag-Rh alloy nanoparticles have a similar property to Pd– October 30th, 2014

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

Software

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

How things coil: Researchers discover that simulation technology designed for Hollywood can be used as a predictive tool for understanding fundamental engineering problems September 29th, 2014

Terabyte Photonic Dataset Sale July 30th, 2014

Chip Technology

Sussex physicists find simple solution for quantum technology challenge October 28th, 2014

Watching the hidden life of materials: Ultrafast electron diffraction experiments open a new window on the microscopic world October 27th, 2014

Breakthrough in molecular electronics paves the way for DNA-based computer circuits in the future: DNA-based programmable circuits could be more sophisticated, cheaper and simpler to make October 27th, 2014

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Announcements

First Observation of Electronic Structure in Ag-Rh Alloy Nanoparticles Having Hydrogen Absorbing: Storage Property –Attempting to solve the mystery of why Ag-Rh alloy nanoparticles have a similar property to Pd– October 30th, 2014

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

Printing/Lithography/Inkjet/Inks

3DXNano™ ESD Carbon Nanotube 3D Printing Filament - optimized for demanding 3D printing applications in the semi-con and electronics industry October 16th, 2014

Aculon NanoClear Stencil Solution Wins 2014 Global Technology Award at SMTAI October 12th, 2014

Fast, cheap nanomanufacturing: Arrays of tiny conical tips that eject ionized materials could fabricate nanoscale devices cheaply October 4th, 2014

'Greener,' low-cost transistor heralds advance in flexible electronics September 24th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE