Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > News > Trillionth Floor, Please: UConn Research Could Help Build Elevator To Space

September 8th, 2008

Trillionth Floor, Please: UConn Research Could Help Build Elevator To Space

Abstract:
An elevator that leads into space might sound farfetched, but scientists have been seriously considering it for years and work at the University of Connecticut could end up being a key part of it actually happening.

UConn chemistry professor Fotios Papadimitrakopoulos, 43, believes he and his team of researchers have found a way to harness the potential of nanotubes an extremely strong material made from carbon molecules. Their work was recently published in the journal Nature Nanotechnology. Sang-Yong Ju, a doctoral candidate in polymer science, is the lead author.

If the West Hartford resident is right about the potential of their work, it could lead to practical applications for everything from new drug delivery systems to better tennis rackets.

And, yes, a space elevator. It's an idea that's been around for more than a century, but never seriously considered until recent breakthroughs in nanotube technology.

It's pretty much what it sounds like. The most commonly touted vision of the space elevator involves a paper-thin ribbon made from carbon nanotubes that brings carrier cars thousands of miles into orbit. The ribbon would be tethered to the Earth's surface, while a counterweight at the other end a space station, perhaps would float in orbit. The centrifugal force from the Earth's rotation would keep the line taut.

Source:
courant.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Possible Futures

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Nanomedicine

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

SLAC X-ray laser turns crystal imperfections into better images of important biomolecules: New method could remove major obstacles to studying structures of complex biological machines February 11th, 2016

Announcements

Graphene leans on glass to advance electronics: Scientists' use of common glass to optimize graphene's electronic properties could improve technologies from flat screens to solar cells February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Sports

Imec and Cloudtag Collaborate on High Quality Frictionless Wearables for Lifestyle Coaching: Next-generation health and fitness tracker Cloudtag TrackTM launched at CES 2016 January 7th, 2016

New stretchable, wearable sensor made with chewing gum (video) December 2nd, 2015

Make mine a decaf: Breakthrough in knowledge of how nanoparticles grow: University of Leicester and CNRS researchers observe how nanoparticles grow when exposed to helium July 23rd, 2015

New composite material as CO2 sensor June 8th, 2015

Aerospace/Space

NSS Pays Tribute to Late NSS Governor Dr. Marvin Minsky, A Pioneer in Artificial Intelligence February 11th, 2016

Researchers develop completely new kind of polymer: Hybrid polymers could lead to new concepts in self-repairing materials, drug delivery and artificial muscles January 30th, 2016

Scientists build a neural network using plastic memristors: A group of Russian and Italian scientists have created a neural network based on polymeric memristors -- devices that can potentially be used to build fundamentally new computers January 28th, 2016

Graphene composite may keep wings ice-free: Rice University develops conductive material to heat surfaces, simplify ice removal January 25th, 2016

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic