Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Chemists make beds with soft landings: Researchers create stable, highly pure helical peptide arrays

With soft-landing techniques, the peptides fashion themselves into stable helices (in red).

Credit: Julia Laskin/Pacific Northwest National Laboratory
With soft-landing techniques, the peptides fashion themselves into stable helices (in red).

Credit: Julia Laskin/Pacific Northwest National Laboratory

Abstract:
Bedsprings aren't often found in biology. Now, chemists have succeeded in making a layer of tiny protein coils attached to a surface, much like miniature bedsprings in a frame. This thin film made of stable and very pure helices can help researchers develop molecular electronics or solar cells, or to divine the biology of proteins.

Chemists make beds with soft landings: Researchers create stable, highly pure helical peptide arrays

RICHLAND, WA | Posted on August 20th, 2008

Physical chemists at the Department of Energy's Pacific Northwest National Laboratory pulled off this design trick using a "soft-landing" technique that disperses the tiny protein coils onto a waiting surface. The small proteins called peptides are of a variety that normally take the shape of a coiled spring or helix in gas phase. The method used by PNNL's Julia Laskin and Peng Wang delivered ultra-pure helical peptides to the surface and trapped them there, they report in July 29 and will appear in print in an upcoming issue of Angewandte Chemie.

"Controlling the conformation of peptides is not easy," said Laskin. "Our previous studies showed that soft-landing can be used to prepare ultrapure peptide layers on substrates. The question we faced was, in addition to controlling purity, can we also control the structure of the molecules? We showed we could."

Researchers have been trying to make thin films of helical peptides for many years. Because the peptides line up in an orderly fashion, the overall chemical nature of the thin films make them useful for a variety of technological applications. They can be modified with light sensitive molecules and turned into components of solar cells; or designed to change shape when a current is applied for molecular electronics. Also, the helices themselves can be used to elicit cues about how proteins function.

After making the thin films out of generic peptides previously, Laskin and Wang wanted to use this method to make a film out of helical peptides, and compare it with a more common method called electrospray.

To do so, Laskin and Wang began with peptides made almost entirely of the amino acid alanine. Due to alanine's chemical nature, long chains of it naturally form so-called α helices. The researchers ended the alanine chain with the amino acid lysine, which stabilizes the helix and allows the coiled chain to be chemically attached to the surface.

Working with a specially designed mass-selected ion deposition instrument at DOE's Environmental Molecular Sciences Laboratory on the PNNL campus, they deposited the peptides on the support layer in one of two ways, starting either from a liquid form for electrospray or from a gaseous mixture for soft-landing. In each case, the chemists began with the peptides (either in liquid or gas), zapped them to give them a slight electrical charge and blew them onto the surface.

When the chemists examined the peptide shapes in the solution and the resulting thin film, they found, unexpectedly, that most of the peptides failed to form helices. Instead, the majority of peptides took on a flat shape known as a β sheet. The dearth of helices in liquid form surprised the researchers.

When the researchers next used soft-landing to form thin layers, they didn't know if the peptides would form helices before landing on the surface. "Because we were starting from something that wasn't α-helical in solution, we were a little pessimistic whether it would work at all," Wang said.

But work it did. Depositing the peptides with soft-landing, the chemists found that nearly all of them alighted as helices. In addition, they could chemically connect the helices to the surface using a related technique called reactive-landing. When the chemists treated the thin layer with sound waves to test how easily the peptides fell off or changed shape, they found that some loosely bound peptides fell off, but those remaining maintained their helical forms.

"They formed a nicely organized, beautiful layer," says Wang.

Next, the team would like to create thin peptide layers using different support surfaces and a different mix of peptide shapes, to learn how to control the design of the thin films precisely.

"We found an interesting pathway to conduct different types of chemical reactions between complex molecules and substrates that will potentially enable us to prepare materials that cannot be made by standard methods," said Laskin.

"We hope to conduct lots of chemistry on the thin films," said Laskin -- chemistry that will let them spring forward into understanding biology and developing new materials.

Reference: P. Wang and J. Laskin, Helical Peptide Arrays on Self-Assembled Monolayer Surfaces through Soft and Reactive Landing of Mass-Selected Ions, Angewandte Chemie, online July 29, 2008, DOI 10.1002/anie.200801366 (dx.doi.org/10.1002/anie.200801366).

This work was supported by PNNL discretionary funding and DOE's Office of Basic Energy Sciences, part of the Office of Science.

The Environmental Molecular Sciences Laboratory is a national scientific user facility sponsored by the Department of Energy's Office of Science, Biological and Environmental Research program that is located at Pacific Northwest National Laboratory. EMSL offers an open, collaborative environment for scientific discovery to researchers around the world. EMSL's technical experts and suite of custom and advanced instruments are unmatched. Its integrated computational and experimental capabilities enable researchers to realize fundamental scientific insights and create new technologies.

####

About DOE/Pacific Northwest National Laboratory
Pacific Northwest National Laboratory is a Department of Energy Office of Science national laboratory where interdisciplinary teams advance science and technology and deliver solutions to America's most intractable problems in energy, national security and the environment. PNNL employs 4,000 staff, has a $855 million annual budget, and has been managed by Ohio-based Battelle since the lab's inception in 1965.

For more information, please click here

Contacts:
Mary Beckman

509-375-3688

Copyright © DOE/Pacific Northwest National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Maximum Precision in 3D Printing: New complete solution makes additive manufacturing standard for microfabrication February 26th, 2015

Chemistry

Chromium-Centered Cycloparaphenylene Rings as New Tools for Making Functionalized Nanocarbons February 24th, 2015

Stretch and relax! -- Losing 1 electron switches magnetism on in dichromium February 23rd, 2015

A straightforward, rapid and continuous method to protect MOF nanocrystals against water February 9th, 2015

Research shows benefits of silicon carbide for sensors in harsh environments: Advantages identified across industries February 9th, 2015

Nanoelectronics

New nanowire structure absorbs light efficiently: Dual-type nanowire arrays can be used in applications such as LEDs and solar cells February 25th, 2015

Ultra-thin nanowires can trap electron 'twisters' that disrupt superconductors February 24th, 2015

Improved fire detection with new ultra-sensitive, ultraviolet light sensor February 17th, 2015

Nanotechnology facility planned in Lund, Sweden: A production facility for start-ups in the field of nanotechnology may be built in the Science Village in Lund, a world-class research and innovation village that is also home to ESS, the European Spallation Source February 15th, 2015

Discoveries

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Announcements

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Energy

In quest for better lithium-air batteries, chemists boost carbon's stability: Nanoparticle coatings improve stability, cyclability of '3DOm' carbon February 25th, 2015

New nanowire structure absorbs light efficiently: Dual-type nanowire arrays can be used in applications such as LEDs and solar cells February 25th, 2015

Learning by eye: Silicon micro-funnels increase the efficiency of solar cells February 25th, 2015

Magnetic nanoparticles enhance performance of solar cells X-ray study points the way to higher energy yields February 25th, 2015

Solar/Photovoltaic

New nanowire structure absorbs light efficiently: Dual-type nanowire arrays can be used in applications such as LEDs and solar cells February 25th, 2015

Learning by eye: Silicon micro-funnels increase the efficiency of solar cells February 25th, 2015

Magnetic nanoparticles enhance performance of solar cells X-ray study points the way to higher energy yields February 25th, 2015

Researchers enable solar cells to use more sunlight February 25th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE