Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > News > Invisible Carpet Idea Close to Actual Invisibility

July 19th, 2008

Invisible Carpet Idea Close to Actual Invisibility

Abstract:
Invisibility cloaks are cool, but an invisibility carpet is more practical.

That's according to scientists from Imperial College London, who recently published a paper detailing the creation of a material that would be the first to hide objects in visible light, something no cloaking device has ever achieved.

"We've given a prescription for how to cloak something in visible light," said John Pendry, who, along with Jensen Li, wrote the paper that appeared recently on ArXiv.org. "It will be difficult to make but it is also practical."

Cloaking an object requires structures, often referred to as metamaterials, that channel light in a specific way.

The only way to channel light in that fashion is by using structures smaller than the wavelength of light being used to detect an object. In 2006, Duke University scientists cloaked an object from light centimeters long by creating a metamaterial with structures millimeters in size.

To cloak an object in visible light, which has a much smaller wavelength, around half a micron, scientists would have to create structures nanometers in size, which, according to Pendry, "requires some clever nanotechnology."

Source:
dsc.discovery.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Aculon Hires New Business Development Director December 19th, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Military

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

UCLA engineers first to detect and measure individual DNA molecules using smartphone microscope December 15th, 2014

Nanoshaping method points to future manufacturing technology December 11th, 2014

Stacking two-dimensional materials may lower cost of semiconductor devices December 11th, 2014

Human Interest/Art

Longhorn beetle inspires ink to fight counterfeiting November 5th, 2014

Iran-Made Respiratory Nano Masks Provided to Hajj Pilgrims October 23rd, 2014

Japanese gold leaf artists worked on a nano-scale: Study demonstrates X-ray fluorescence spectroscopy is a non-destructive way to date artwork July 3rd, 2014

Harry Potter-style invisibility cloaks: A real possibility next Christmas? Forget socks and shaving foam, the big kids of tomorrow want an invisible cloak for Christmas December 19th, 2013

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE