Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Synopsys and Mattson Collaborate on Advanced TCAD Process Simulation of Technology

Abstract:
Mattson Technology, Inc. (Nasdaq: MTSN), a leading supplier of advanced semiconductor process equipment used to manufacture integrated circuits (ICs), and Synopsys, Inc. (Nasdaq: SNPS), a world leader in software and IP for semiconductor design and manufacturing, today announced a collaboration to offer calibrated process models for flash annealing equipment used on the 45-nanometer (nm) node and beyond. Through this collaboration, Synopsys' Sentaurus Process models will be calibrated to the Mattson Millios(TM) flash-assist Rapid Thermal Process (fRTP(TM)) system. As a result, engineers will be able to simulate and optimize process conditions before costly silicon processing, thus lowering development time and cost.

Synopsys and Mattson Collaborate on Advanced TCAD Process Simulation of Technology

SAN FRANCISCO, CA | Posted on July 15th, 2008

The continual scaling of CMOS technology demands new processing techniques to meet the strict International Technology Roadmap for Semiconductor (ITRS) targets for junction depth and sheet resistance in the source and drain extensions of CMOS transistors -- one of the critical device regions requiring precise process control. To meet this challenge, Mattson has developed the Millios fRTP system, which features a powerful flash lamp and highly accurate temperature control and monitoring that allow engineers to optimize process conditions for simultaneous achievement of shallow junction depth and low sheet resistance. The Millios system combines high throughput, precise process control and process flexibility to provide a high-volume IC manufacturing solution for milli-second annealing.

Sentaurus Process is Synopsys' multi-dimensional process simulator that is part of the TCAD Sentaurus suite. It is equipped with a set of advanced process models that include default parameters calibrated with data from equipment vendors and provides a predictive framework for simulating a broad range of technologies from nanoscale CMOS to large-scale high-voltage power devices. The combination of these technologies creates a powerful solution for optimizing the flash-annealing process using the Millios fRTP system.

"Process technologies are increasingly complex and costly to develop, and therefore TCAD tools with models calibrated to specific process conditions are very important to guide experimentation and process optimization," said Howard Ko, senior vice president and general manager of the Silicon Engineering Group at Synopsys. "Collaborations with leading equipment vendors such as Mattson Technology are a critical component of our strategy to deliver advanced and accurate TCAD tools to the market."

Jeff Gelpey, Mattson fellow, added, "Process development with advanced tools such as Millios becomes very time consuming and expensive if done only with experimentation. This collaboration between Synopsys and us enables the use of Sentaurus TCAD in conjunction with models calibrated to our equipment so that the development engineer can optimize the process more quickly and explore many more options."

About Millios

In the nanotechnology era, where chips have features 1000 times smaller than the diameter of a human hair, advanced RTP applications will require annealing that is fractions of, to a few thousandths of, a second in duration. Mattson's Millios Flash-Assist RTP (fRTP) is a next-generation millisecond annealing tool featuring advanced process control and high throughput to meet manufacturing and development needs. The technique offers effective process times of 1-3 milliseconds. The system features a patented arc lamp technology that processes the wafers through millisecond "flashes" (similar to a camera flash), providing improved thermal control for ultra-shallow junction (USJ) anneal and other advanced applications through the 22 nm regime. Millios also combines fully automated wafer handling hardware and software from Mattson's production-proven Helios(TM) RTP system. Millios was qualified in 2007 by semiconductor and leading nanoelectronics research centers in Europe and the United States.

####

About Mattson Technology, Inc.
Mattson Technology, Inc. is a leading supplier of dry strip equipment and the second largest supplier of rapid thermal processing equipment in the global semiconductor industry. The company’s strip and RTP equipment utilize innovative technology to deliver advanced processing performance and productivity gains to semiconductor manufacturers worldwide for the fabrication of current- and next-generation devices. For more information, please contact Mattson Technology, Inc., 47131 Bayside Parkway, Fremont, Calif. 94538. Telephone: (800) MATTSON/(510) 657-5900. Fax: (510) 492-5911. Internet: www.mattson.com.

About Synopsys TCAD

Technology CAD (TCAD) refers to the use of computer simulation to model semiconductor processing and device operation. TCAD provides insight into the fundamental physical phenomena that ultimately impacts performance and yield.

About Synopsys

Synopsys, Inc. (Nasdaq: SNPS) is a world leader in electronic design automation (EDA), supplying the global electronics market with the software, intellectual property (IP) and services used in semiconductor design and manufacturing. Synopsys’ comprehensive, integrated portfolio of implementation, verification, IP, manufacturing and field-programmable gate array (FPGA) solutions helps address the key challenges designers and manufacturers face today, such as power and yield management, system-to-silicon verification and time-to-results. These technology-leading solutions help give Synopsys customers a competitive edge in bringing the best products to market quickly while reducing costs and schedule risk. Synopsys is headquartered in Mountain View, California, and has more than 60 offices located throughout North America, Europe, Japan, Asia and India. Visit Synopsys online at www.synopsys.com.

Forward Looking Statements

This press release contains forward-looking statements within the meaning of the safe harbor provisions of Section 21E of the Securities Exchange Act of 1934, including statements regarding the expected benefits and results of the collaboration, on advanced TCAD process simulation of CMOS technology, between Synopsys and Mattson. These statements are based on Synopsys’ and Mattson’s current expectations and beliefs. Actual results could differ materially from these statements as a result of unforeseen difficulties in completing the collaboration and the other factors contained in Synopsys’ Quarterly Report on Form 10-Q for the fiscal quarter ended April 30, 2008 and Mattson’s Quarterly Report on Form 10-Q for the fiscal quarter ended March 30, 2008.

Synopsys is a registered trademark of Synopsys, Inc. fRTP, Millios and
Helios are trademarks of Mattson Technology, Inc. Any other trademarks or
registered trademarks mentioned in this release are the intellectual property
of their respective owners.

For more information, please click here

Contacts:
Editorial Contacts:
Sheryl Gulizia
Synopsys, Inc.
650-584-8635


Lisa Gillette-Martin
MCA, Inc.
650-968-8900 x115


Jeff Gelpey
Mattson Technology, Inc.
510-492-2765


Laura Guerrant
Guerrant Associates
808-882-1467

Copyright © PR Newswire Association LLC.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chip Technology

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Alliances/Trade associations/Partnerships/Distributorships

Manchester graphene spin-out signs $1billion game-changing deal to help tackle global sustainability challenges: Landmark deal for the commercialisation of graphene April 14th, 2023

Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022

Research partnerships

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project