Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Stanford engineers show nanotube circuits can be made en masse

Abstract:
Most innovations don't go far unless there is a way to turn them into products that are manufacturable on a mass scale. That's why new research on carbon nanotubes, presented June 19 by a group of Stanford electrical engineers, is likely to draw industry attention.

The engineers unveiled a method for making integrated circuit chips with complex nanotube components on the scale and with the parallelism that the semiconductor industry must employ to make chips that are economical.

Stanford engineers show nanotube circuits can be made en masse

PALO ALTO, CA | Posted on July 10th, 2008

"We have shown here processes that are scalable, that are akin to conventional semiconductor manufacturing on the wafer scale," said electrical engineering Professor H.-S. Philip Wong, one of the authors of a paper presented at the Symposia on VLSI Technology and Circuits in Honolulu. Wafers are the large discs of silicon on which semiconductor manufacturers pattern several hundred computer chips that are then cut out and packaged as products. "The lithography is on a wafer scale, the nanotube growth is on the wafer scale and all the processes that we use here are very similar to conventional semiconductor manufacturing," Wong said.

Because of their potential to act as high-performance transistors at higher speeds and lower power than conventional silicon technology, nanotubes are the subject of intensive research worldwide. So far, however, researchers have only been able to make nanotube circuits one at a time, rather than on the scale known as VLSI, for Very Large Scale Integration.

Moreover, the information processing components of the circuits, known as logic gates, have typically been simple inverters, rather than the whole variety of more complex gates that are needed in useful logic circuits. This new ability to make chips on a large scale with the needed variety of logic gates therefore represents an important advance toward making commercially viable nanotube integrated circuits, said Subhasish Mitra, an assistant professor of electrical engineering and of computer science.

The paper also represents the first real demonstration of a design technique that makes complex logic functional even when the nanotubes turn out to have goofy kinks and bends (rather than lying straight) or are in the wrong place. Wong and Mitra unveiled the technique last year in simulations but have now shown that it works in an actual fabrication process.

In addition to Wong and Mitra, the paper's other authors are Nishant Patil and Albert Lin, both electrical engineering graduate students, and Edward Myers, a staff member of the Stanford Nanofabrication Facility, a research fabrication facility on campus that is part of the National Nanotechnology Infrastructure Network.
Handling the heat

The Stanford-devised process involves growing nanotubes on a quartz wafer—a 4-inch diameter platter—and then transferring them like a kid's temporary tattoo onto a silicon wafer patterned with metal electrodes. The nanotubes could then connect the electrodes to make transistors and logic gates. The quartz-to-silicon transfer technology had already been established for small pieces of substrates, but what has often stymied researchers has been finding a way to grow nanotubes on such a large slab of quartz. Quartz helps facilitate nanotube growth but is sensitive to the heat required in the process.

The Stanford engineers overcame that problem by realizing that the quartz wafer would shatter like glass if it were heated too quickly as the temperature approached a certain critical point (roughly 1,100 degrees Fahrenheit). By slowing down the heating process, the researchers kept the wafers intact.

The nanotubes were then transferred to the silicon wafer to be overlaid on the electrodes. The electrodes were patterned according to special algorithms designed to ensure that however the individual nanotubes were laid out, the logic gates that were created would still work.

In all, the group created about 197 dies, or chips, on the 4-inch diameter wafer. Each chip had about 1,000 transistors, meaning that the wafer had more than 100,000 transistors. Random testing of 18 transistors per chip revealed that 99 percent of the transistors were functional. Full-scale commercial chips, of course, would require millions of transistors per chip and sophisticated interconnections among them.

Even before a full-fledged commercial nanotube chip could be designed, more research is needed to resolve some fundamental problems. Among them is a need to increase the density of nanotubes on the wafer, a goal that could be accomplished by repeated transfers from different quartz wafers to the same silicon wafer and further optimizing the nanotube growth conditions. In addition, researchers must find a way to thoroughly weed from their logic gates pesky "metallic" nanotubes, which can short-circuit transistors.

Still, the researchers are optimistic about the progress so far.

"The fundamental problem in this domain which we were able to overcome is that in the past researchers would have to find the nanotubes on the substrate and then make devices and circuits wherever they were," Mitra said. "But you want to be able to make things in parallel—at VLSI scale—without worrying about the exact placement and orientation of the nanotubes. We can now show that we are able to do that."

The research was funded by the Focus Center Research Program, a Semiconductor Research Corp. program, and the National Science Foundation.

####

For more information, please click here

Contacts:

Stanford News Service
425 Santa Teresa St.
Stanford, CA 94305-2245

(650) 723-2558 (main number)
(650) 725-0247 (fax)

Copyright © Stanford University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chip Technology

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project