Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > The race to find the best quantum bit (qubit)

Illustration of a carbon nanotube
Illustration of a carbon nanotube

Abstract:
Post Doc Henrik Ingerslev Jørgensen from the Nano-Science Center has come an important step closer to the quantum computer. The journal Nature Physics has just published the researcher's groundbreaking discovery.

The race to find the best quantum bit (qubit)

Copenhagen, Denmark | Posted on July 2nd, 2008

- Our results give us, for the first time, the possibility to understand the interaction between just two electrons placed next to each other in a carbon nanotube. A groundbreaking discovery, which is fundamental for the creation of a quantum mechanical bit, a so-called quantum bit - the cornerstone of a quantum computer, explains Henrik Jørgensen, who is one of the many researchers competing on an international level to be the first to make a quantum bit in a carbon nanotube.

The ability to produce a quantum computer is still some years ahead in the future, the implementation will, however, mean a revolution within the computer industry. This is due to the quantum mechanical computation method, which quickly will be able to solve certain complicated calculations that on an ordinary computer would take more than the lifetime of the Universe to calculate.
Who will be the first?

Over the past years there has been a tremendously increasing interest in developing a quantum computer within the international world of researchers. The production of a quantum computer is enormously challenging and demands development of new theories and new technologies by research-groups all over the world. Henrik Jørgensen's results have been developed in close collaboration with the Hitachi Cambridge Laboratory in England. Adviser and Vice-Chairman at the Nano-Science Center, Professor Poul Erik Lindelof, says:

- We have been studying the quantum mechanical properties of carbon nanotubes for ten years, and today we are one of the leading laboratories within this field of research. I believe Henrik Jørgensen's experimental work can prove to be just the right way forward.

Kasper Grove Rasmussen is joint author of the article. He says:

- We use carbon nanotubes due to their unique electronic and material properties and not least due to the absence of disturbing magnetism from the atom nuclei which is found in certain competing materials. At present it is not possible to say which material will be the most suitable for the quantum computer, or who will be the first to realize a quantum bit in a carbon nanotube, but the researchers at the Nano-Science Center are a big step closer to the solution.

####

About University of Copenhagen
With over 37,000 students and more than 7,000 employees, the University of Copenhagen is the largest institution of research and education in Denmark. The purpose of the University – to quote the University Statute – is to ’conduct research and provide further education to the highest academic level’.

Approximately one hundred different institutes, departments, laboratories, centres, museums, etc., form the nucleus of the University, where professors, lecturers and other academic staff, as well as most of the technical and administrative personnel, carry out their daily work, and where teaching takes place.

For more information, please click here

Contacts:
University of Copenhagen
Communications Division
+45 35 32 42 61
Nørregade 10, P.O. Box 2177
DK-1017 Copenhagen K


Henrik Ingerslev Jørgensen
Mobile.:+45 22269578

Copyright © University of Copenhagen

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers develop new way to manufacture nanofibers May 21st, 2015

Nanotherapy effective in mice with multiple myeloma May 21st, 2015

Turn that defect upside down: Twin boundaries in lithium-ion batteries May 21st, 2015

INSIDDE: Uncovering the real history of art using a graphene scanner May 21st, 2015

Nanotubes/Buckyballs/Fullerenes

Researchers develop new way to manufacture nanofibers May 21st, 2015

Sandia researchers first to measure thermoelectric behavior by 'Tinkertoy' materials May 20th, 2015

Cotton fibres instead of carbon nanotubes May 9th, 2015

A better way to build DNA scaffolds: McGill researchers devise new technique to produce long, custom-designed DNA strands May 6th, 2015

Quantum Computing

Researchers discover 'swing-dancing' pairs of electrons: Findings set the stage for room-temperature superconductivity and the transformation of high-speed rail, quantum computers May 14th, 2015

Researchers build new fermion microscope: Instrument freezes and images 1,000 individual fermionic atoms at once May 13th, 2015

Quantum 'gruyères' for spintronics of the future: Topological insulators become a little less 'elusive' May 12th, 2015

Magic wavelengths: Tuning up Rydberg atoms for quantum information applications May 12th, 2015

Discoveries

Simulations predict flat liquid May 21st, 2015

Researchers develop new way to manufacture nanofibers May 21st, 2015

Nanotherapy effective in mice with multiple myeloma May 21st, 2015

Turn that defect upside down: Twin boundaries in lithium-ion batteries May 21st, 2015

Announcements

Researchers develop new way to manufacture nanofibers May 21st, 2015

Nanotherapy effective in mice with multiple myeloma May 21st, 2015

Turn that defect upside down: Twin boundaries in lithium-ion batteries May 21st, 2015

INSIDDE: Uncovering the real history of art using a graphene scanner May 21st, 2015

Quantum nanoscience

Quantum physics on tap - Nano-sized faucet offers experimental support for longstanding quantum theory May 16th, 2015

Researchers discover 'swing-dancing' pairs of electrons: Findings set the stage for room-temperature superconductivity and the transformation of high-speed rail, quantum computers May 14th, 2015

Researchers build new fermion microscope: Instrument freezes and images 1,000 individual fermionic atoms at once May 13th, 2015

Quantum 'gruyères' for spintronics of the future: Topological insulators become a little less 'elusive' May 12th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project