Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > The race to find the best quantum bit (qubit)

Illustration of a carbon nanotube
Illustration of a carbon nanotube

Abstract:
Post Doc Henrik Ingerslev Jørgensen from the Nano-Science Center has come an important step closer to the quantum computer. The journal Nature Physics has just published the researcher's groundbreaking discovery.

The race to find the best quantum bit (qubit)

Copenhagen, Denmark | Posted on July 2nd, 2008

- Our results give us, for the first time, the possibility to understand the interaction between just two electrons placed next to each other in a carbon nanotube. A groundbreaking discovery, which is fundamental for the creation of a quantum mechanical bit, a so-called quantum bit - the cornerstone of a quantum computer, explains Henrik Jørgensen, who is one of the many researchers competing on an international level to be the first to make a quantum bit in a carbon nanotube.

The ability to produce a quantum computer is still some years ahead in the future, the implementation will, however, mean a revolution within the computer industry. This is due to the quantum mechanical computation method, which quickly will be able to solve certain complicated calculations that on an ordinary computer would take more than the lifetime of the Universe to calculate.
Who will be the first?

Over the past years there has been a tremendously increasing interest in developing a quantum computer within the international world of researchers. The production of a quantum computer is enormously challenging and demands development of new theories and new technologies by research-groups all over the world. Henrik Jørgensen's results have been developed in close collaboration with the Hitachi Cambridge Laboratory in England. Adviser and Vice-Chairman at the Nano-Science Center, Professor Poul Erik Lindelof, says:

- We have been studying the quantum mechanical properties of carbon nanotubes for ten years, and today we are one of the leading laboratories within this field of research. I believe Henrik Jørgensen's experimental work can prove to be just the right way forward.

Kasper Grove Rasmussen is joint author of the article. He says:

- We use carbon nanotubes due to their unique electronic and material properties and not least due to the absence of disturbing magnetism from the atom nuclei which is found in certain competing materials. At present it is not possible to say which material will be the most suitable for the quantum computer, or who will be the first to realize a quantum bit in a carbon nanotube, but the researchers at the Nano-Science Center are a big step closer to the solution.

####

About University of Copenhagen
With over 37,000 students and more than 7,000 employees, the University of Copenhagen is the largest institution of research and education in Denmark. The purpose of the University – to quote the University Statute – is to ’conduct research and provide further education to the highest academic level’.

Approximately one hundred different institutes, departments, laboratories, centres, museums, etc., form the nucleus of the University, where professors, lecturers and other academic staff, as well as most of the technical and administrative personnel, carry out their daily work, and where teaching takes place.

For more information, please click here

Contacts:
University of Copenhagen
Communications Division
+45 35 32 42 61
Nørregade 10, P.O. Box 2177
DK-1017 Copenhagen K


Henrik Ingerslev Jørgensen
Mobile.:+45 22269578

Copyright © University of Copenhagen

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A nano-roundabout for light December 10th, 2016

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Nanotubes/Buckyballs/Fullerenes

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Cutting-edge nanotechnologies are breaking into industries November 18th, 2016

Hybrid nanostructures hold hydrogen well: Rice University scientists say boron nitride-graphene hybrid may be right for next-gen green cars October 25th, 2016

Quantum Computing

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Construction of practical quantum computers radically simplified: Scientists invent ground-breaking new method that puts quantum computers within reach December 5th, 2016

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

Single photon converter -- a key component of quantum internet November 28th, 2016

Discoveries

A nano-roundabout for light December 10th, 2016

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Announcements

A nano-roundabout for light December 10th, 2016

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Quantum nanoscience

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

Trickling electrons: Close to absolute zero, the particles exhibit their quantum nature November 10th, 2016

Scientists set traps for atoms with single-particle precision: Technique may enable large-scale atom arrays for quantum computing November 7th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project