Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Cambridge NanoTech Ships 100th Atomic Layer Deposition System

Abstract:
Today Cambridge NanoTech, the leading supplier of Atomic Layer Deposition (ALD) systems for research and industry, announced the shipment of their 100th ALD System to the Tata Institute of Fundamental Research (TIFR) in Mumbai, India. The Savannah S100 will be used for making nano-electric devices, such as depositing the gate dielectric for nanowire transistors and also for coating mesoporous structures.

Cambridge NanoTech Ships 100th Atomic Layer Deposition System

Cambridge, MA | Posted on June 28th, 2008

"We decided to buy the Savannah system over many other options because of the outstanding technical support that the Cambridge NanoTech team is known for, plus the flexibility to try new ideas and material systems. In addition, the Savannah has been proven to work well in a multi-user laboratory research environment and offered great value," said Dr. Mandar Deshmukh, of the Department of Condensed Matter Physics and Materials Science. "It also helped that I knew of the work that Dr. Becker did at Harvard before the company was founded."

"This represents a significant milestone for us," said Dr. Jill Becker, Founder, Cambridge NanoTech. "Not only is it our 100th system shipment, but also our first system shipped to India. Our business has grown consistently since our inception. We have recently added several key technologists to our team and have expanded our global customer service network to support our burgeoning business. This work at TIFR is indicative of the type of groundbreaking research ALD is enabling worldwide."

####

About Cambridge NanoTech
Cambridge NanoTech focuses on simplifying the science of atomic layer deposition solutions for customers worldwide - from universities to the largest corporations - by delivering comprehensive services and versatile, turnkey systems that are accessible, affordable and accurate to the atomic scale. Cambridge NanoTech, founded in 2003, grew directly out of the foremost ALD research group in the world – the Gordon Lab at Harvard University.

About the Tata Institute of Fundamental Research

The Tata Institute of Fundamental Research (TIFR) was established in 1945 at the initiative of Dr. Homi Jehangir Bhabha. There are at present about 400 scientists in the Institute working in various disciplines grouped into three major schools: Mathematics, Natural Sciences, and Technology and Computer Science. Learn more at www.tifr.res.in.

For more information, please click here

Contacts:
Cambridge NanoTech
Mr. Ray Ritter
617-674-8800

or
Technique Communications
Mr. John Morgan
781-718-4530

Copyright © Business Wire 2008

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

Chip Technology

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Diamonds closer to becoming ideal semiconductors: Researchers find new method for doping single crystals of diamond May 25th, 2016

Dartmouth team creates new method to control quantum systems May 24th, 2016

Attosecond physics: A switch for light-wave electronics May 24th, 2016

Nanoelectronics

Researchers demonstrate size quantization of Dirac fermions in graphene: Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices May 20th, 2016

Graphene: A quantum of current - When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene May 20th, 2016

New type of graphene-based transistor will increase the clock speed of processors: Scientists have developed a new type of graphene-based transistor and using modeling they have demonstrated that it has ultralow power consumption compared with other similar transistor devices May 19th, 2016

Self-healing, flexible electronic material restores functions after many breaks May 17th, 2016

Announcements

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

Tools

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

More light on cancer: Scientists created nanoparticles to highlight cancer cells May 21st, 2016

Nanotubes are beacons in cancer-imaging technique: Rice University researchers use spectral triangulation to pinpoint location of tumors May 21st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic