Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > New Noliac family of shear actuators

Abstract:
Noliac has given birth to a line of products: Ceramic shear plate actuators (CSAP), which are based on the Noliac Group's advanced piezo technology.

New Noliac family of shear actuators

Denmark | Posted on June 22nd, 2008

Based on the piezoelectric shear mode, Noliac's shear actuators can be made more compact and have higher resonant frequencies than conventional piezo actuators. In addition, their low capacitance results in reduced power requirements for a given generated displacement in dynamic operation.

Shear actuators are used in numerous applications within e.g. nanopositioning, precision mechanics, active vibration cancellation, semiconductor manufacturing and testing.

Advantages of Noliac‚s CSAPs:
Large stroke for a very compact design
High resonant frequency (fast response)
Symmetrical operation
Low capacitance
Non magnetic
Operation at low temperature

####

About Noliac A/S
The Noliac Group presents a unique proficiency in the field of piezoelectric technology.

We design, develop and manufacture the total range of piezoelectric products - from powders to mono- and multilayer components and all the way to finished plug-and-play applications.

For more information, please click here

Contacts:
Lotte Beck
Phone: +45 49125030

Copyright © Noliac A/S

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Oxford Instruments and Dresden High Magnetic Field Laboratory collaborate to develop HTS magnet technology components for high field superconducting magnet systems June 29th, 2016

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

Announcements

Oxford Instruments and Dresden High Magnetic Field Laboratory collaborate to develop HTS magnet technology components for high field superconducting magnet systems June 29th, 2016

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

Tools

Oxford Instruments and Dresden High Magnetic Field Laboratory collaborate to develop HTS magnet technology components for high field superconducting magnet systems June 29th, 2016

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

FEI Launches Helios G4 DualBeam Series for Materials Science: The Helios G4 DualBeam Series features new capabilities to enable scientists and engineers to answer the most demanding and challenging scientific questions June 27th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic