Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Study finds new properties in non-magnetic materials

Abstract:
A team of Penn State researchers has shown for the first time that the entire class of non-magnetic materials, such as those used in some computer components, could have considerably more uses than scientists had thought. The findings are important because they reveal previously unknown information about the structure of these materials, expanding the number of properties and uses that they potentially could have. A material's properties, such as electrical conductivity and mechanical strength, are what determine its usefulness. The research will be published June 20 in the journal Physical Review Letters.

Study finds new properties in non-magnetic materials

University Park, PA | Posted on June 12th, 2008

A material's properties are determined by its structure, explained Venkatraman Gopalan, a researcher in Penn State's Center for Nanoscale Science, a professor of materials science and engineering, and the project's leader. "If I was out hiking and I found a rock that contained a quartz crystal, I could tell you what properties the crystal can and cannot have just based on what we call its symmetry -- the number and arrangement of crystal planes it has. Symmetry results from the way the atoms are arranged in the quartz," he said. "It is an extremely powerful way of understanding our world."

The non-magnetic materials that Gopalan and his colleagues studied were thought to have one of the 32 different crystal symmetries, called point group symmetries, known to exist in nature. On the other hand, magnetic materials have 90 different point group symmetries because their atomic particles have magnetic spins, which can be imagined as tiny loops of current. "Motion is an extremely important aspect of magnetism," said Gopalan. "Magnetism develops in nature as soon as charged particles start moving or spinning."

Scientists long have believed that symmetry allows magnetic materials to have more properties than non-magnetic materials because flipping the direction of spin creates an additional symmetry. But Gopalan's team has shown that non-magnetic materials, theoretically, can have just as many properties as magnetic materials. According to Gopalan, some non-magnetic materials have groups of atoms that distort by twisting or rotating. This slight movement is equivalent to a tiny loop of current and is enough to give the material some additional properties that previously were thought to belong only to magnetic materials.

The researchers tested their theory experimentally using strontium titanate, which is a non-magnetic material. They cooled the material and found that its oxygen atoms responded by twisting into a tighter postion to save energy and space. "The oxygen atoms don't rotate all the way around like a loop of current does in magnetic materials, but theoretical analyses show that they do twist and, therefore, it is possible that these materials could have previously unknown properties," said Gopalan.

Next, the team investigated whether the twisting movement translated into the expression of additional properties. In particular, they predicted and tested for an optical property that they call roto second harmonic generation, which is analogous to a well-known property called magnetic second harmonic generation. Second harmonic generation is found, for example, in the crystals that are used in green laser pointers to convert infrared laser light into green laser light. The group found that the strontium titanate material does have a small amount of roto second harmonic generation.

"Nobody has thought of relating magnetic symmetries to a non-magnetic material like strontium titanate, but that's precisely what our paper does," said Gopalan. "We first did a theoretical analysis in which we applied the symmetry framework that traditionally is used to describe magnetic materials to this vast class of non-magnetic materials. Then we did a laboratory experiment with a particular non-magnetic material and we found that it has a property that previously was thought to belong only to magnetic materials. We suggest that it is possible for the entire class of non-magnetic materials to have more symmetries and more properties than previously have been thought possible."

The team's findings could lead to an explosion of research into new properties of non-magnetic materials and to possible applications of these properties. "These materials are used in hundreds of applications," said Peter Schiffer, associate vice president for research and a professor of physics at Penn State, "but this new work holds great promise for finding many more uses."

In addition to Gopalan, the research team included Sava Denev, Amit Kumar, Michael Biegalski, Aravind Vasudevarao, Darrell Schlom and Susan Trolier-McKinstry from Penn State, and scientists from the University of Wisconsin and the University of Sheffield in the United Kingdom. The team plans to investigate additional non-magnetic materials, with an ultimate goal of producing a new catalog of materials and their properties. This research was funded by the National Science Foundation and the Office of Naval Research.

####

About Penn State
Penn State is a multi-campus public research university that improves the lives of the people of Pennsylvania, the nation, and the world through integrated, high-quality programs in teaching, research, and service.

For more information, please click here

Contacts:
Barbara Kennedy

http://www.science.psu.edu
814-863-4682

Copyright © Penn State

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Searching for errors in the quantum world September 21st, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Nanobiotix: Update on Head and Neck Phase I/II Trial with NBTXR3 and Other program data presented at ImmunoRad 2018 September 20th, 2018

Govt.-Legislation/Regulation/Funding/Policy

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Researchers develop microbubble scrubber to destroy dangerous biofilms September 19th, 2018

Researchers managed to prevent the disappearing of quantum information September 14th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

Discoveries

Searching for errors in the quantum world September 21st, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

NUS researchers invent new test kit for quick, accurate and low-cost screening of diseases: Test results are denoted by a color change and could be further analyzed by a smartphone app, making it attractive as a point-of-care diagnostic device September 19th, 2018

Materials/Metamaterials

How a tetrahedral substance can be more symmetrical than a spherical atom: A new type of symmetry September 14th, 2018

Peering into private life of atomic clusters -- using the world's tiniest test tubes September 6th, 2018

Cannibalistic materials feed on themselves to grow new nanostructures September 1st, 2018

Environmentally friendly photoluminescent nanoparticles for more vivid display colors: Osaka University-led researchers created a new type of light-emitting nanoparticle that is made of ternary non-toxic semiconductors to help create displays and LED lighting with better colors t August 29th, 2018

Announcements

Searching for errors in the quantum world September 21st, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Nanobiotix: Update on Head and Neck Phase I/II Trial with NBTXR3 and Other program data presented at ImmunoRad 2018 September 20th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project