Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Getting wrapped up in solar textiles

A 3-D rendering of "Soft House", which uses household curtains to collect solar energy and provide lighting.
A 3-D rendering of "Soft House", which uses household curtains to collect solar energy and provide lighting.

Abstract:
MIT lecturer focuses on flexible photovoltaic materials

Getting wrapped up in solar textiles

Cambridge, MA | Posted on June 9th, 2008

Sheila Kennedy, an expert in the integration of solar cell technology in architecture who is now at MIT, creates designs for flexible photovoltaic materials that may change the way buildings receive and distribute energy.

These new materials, known as solar textiles, work like the now-familiar photovoltaic cells in solar panels. Made of semiconductor materials, they absorb sunlight and convert it into electricity.

Kennedy uses 3-D modeling software to design with solar textiles, generating membrane-like surfaces that can become energy-efficient cladding for roofs or walls. Solar textiles may also be draped like curtains.

"Surfaces that define space can also be producers of energy," says Kennedy, a visiting lecturer in architecture. "The boundaries between traditional walls and utilities are shifting."

Principal architect in the Boston firm, Kennedy & Violich Architecture, Ltd., and design director of its materials research group, KVA Matx, Kennedy came to MIT this year. She was inspired, she says, by President Susan Hockfield's plan to make MIT the "energy university" and by MIT's interdisciplinary energy curriculum that integrates research and practice.

This spring, Kennedy taught a new MIT architecture course, Soft Space: Sustainable Strategies for Textile Construction. She challenged the students to design architectural proposals for a new fast train station and public market in Porto, Portugal.

For Mary Hale, graduate student in architecture, Kennedy's Soft Space course was an inspiration to pursue photovoltaic technology in her master's thesis.

"I have always been interested in photovoltaics, but before this studio, I am not sure that I would have felt empowered to integrate them into a personal, self-propelled, project," she says.

Kennedy, for her part, will pursue her research in pushing the envelope of energy-efficiency and architecture. A recent project, "Soft House," exhibited at the Vitra Design Museum in Essen, Germany, illustrates what Kennedy means when she says the boundaries between walls and utilities are changing.

For Soft House, Kennedy transformed household curtains into mobile, flexible energy-harvesting surfaces with integrated solid-state lighting. Soft House curtains move to follow the sun and can generate up to 16,000 watt-hours of electricity--more than half the daily power needs of an average American household.

Although full-scale Soft House prototypes were successfully developed, the project points to a challenge energy innovators and other inventors face, Kennedy says. "Emerging technologies tend to under-perform compared with dominant mainstream technologies."

For example, organic photovoltaics (OPV), an emergent solar nano-technology used by the Soft House design team, are currently less efficient than glass-based solar technologies, Kennedy says.

But that lower efficiency needn't be an insurmountable roadblock to the marketplace, Kennedy says, because Soft House provides an actual application of the unique material advantages of solar nano-technologies without having to compete with the centralized grid.

Which brings her back to the hands-on, prototype-building approach Kennedy hopes to draw from in her teaching and work at MIT.

"Working prototypes are a very important demonstration tool for showing people that there are whole new ways to think about energy," she says.

####

About MIT
The mission of MIT is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the 21st century.

For more information, please click here

Contacts:
Teresa Herbert
MIT News Office
Phone: 617-258-5403

Copyright © MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

CiQUS researchers obtain high-quality perovskites over large areas by a chemical method March 4th, 2015

Arrowhead to Present at 2015 Barclays Global Healthcare Conference March 4th, 2015

Nanosorbents Increase Extraction, Recycling of Silver from Aqueous Solutions March 4th, 2015

Black phosphorus is new 'wonder material' for improving optical communication March 3rd, 2015

Announcements

CiQUS researchers obtain high-quality perovskites over large areas by a chemical method March 4th, 2015

Arrowhead to Present at 2015 Barclays Global Healthcare Conference March 4th, 2015

Nanosorbents Increase Extraction, Recycling of Silver from Aqueous Solutions March 4th, 2015

Black phosphorus is new 'wonder material' for improving optical communication March 3rd, 2015

Energy

CiQUS researchers obtain high-quality perovskites over large areas by a chemical method March 4th, 2015

UC research partnership explores how to best harness solar power March 2nd, 2015

Learning by eye: Silicon micro-funnels increase the efficiency of solar cells February 25th, 2015

Magnetic nanoparticles enhance performance of solar cells X-ray study points the way to higher energy yields February 25th, 2015

Textiles/Clothing

Australian startup creates world’s first 100% cotton hydrophobic T-Shirts February 3rd, 2015

Graphene displays clear prospects for flexible electronics February 2nd, 2015

Iranian Scientists Use MOFs to Eliminate Dye Pollutants January 29th, 2015

Teijin to Participate in Nano Tech 2015 January 22nd, 2015

Solar/Photovoltaic

UC research partnership explores how to best harness solar power March 2nd, 2015

New nanowire structure absorbs light efficiently: Dual-type nanowire arrays can be used in applications such as LEDs and solar cells February 25th, 2015

Learning by eye: Silicon micro-funnels increase the efficiency of solar cells February 25th, 2015

Magnetic nanoparticles enhance performance of solar cells X-ray study points the way to higher energy yields February 25th, 2015

Construction

Nanoparticles Increase Durability of Concrete Decorations in Cold Areas January 26th, 2015

Transparent artificial nacre: A brick wall at the nanoscale January 22nd, 2015

Atomic placement of elements counts for strong concrete: Rice University researchers model particulate systems to determine their qualities January 14th, 2015

Iranian Researchers Prolong Life of Steel Armatures in Concrete Structures January 9th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE