Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nanotube production leaps from sooty mess in test tube to ready formed chemical microsensors

Abstract:
Carbon nanotubes' potential as a super material is blighted by the fact that when first made they often take the form of an unprepossessing pile of sooty black mess in the bottom of a test tube. Now researchers in the University of Warwick's Department of Chemistry have found a way of producing carbon nanotubes in which they instantly form a highly sensitive ready made electric circuit.

Nanotube production leaps from sooty mess in test tube to ready formed chemical microsensors

Warwick, UK | Posted on May 6th, 2008

The research has just been published in a paper entitled "Single-Walled Carbon Nanotube Network Ultramicroelectrodes" by University of Warwick researchers Ioana Dumitrescu, Professor Julie Macpherson, Professor Patrick Unwin, and Neil Wilson in Analytical Chemistry, 2008, 10.1021/ac702518g

The researchers used a form of chemical vapour deposition and lithography to create the ready made disc shaped single walled carbon nanotube based ultramicroelectrodes. The nanotubes deposit themselves flat on a surface in a random but relatively even manner. They also all overlap sufficiently to create a single complete metallic micro-circuit right across the final disc. What is even more impressive is that they take up less than one per cent of the surface area of the disc.

This final property makes these instant ultramicroelecrodes particular useful for the creation of ultra sensitive sensors. The low surface area of the conducting part of the disc means that they can be used to screen out background "noise" and cope with low signal to noise ratios making them up to 1000 times more sensitive than conventional ultramicroelecrodes sensors. This property also produces very fast response times allowing them to respond ten times faster than conventional ultramicroelecrodes.

As these ready made ultramicroelecrodes are carbon based they also open up a range of new possibilities for use in living systems. The biocompatibility of carbon is in stark contrast with the obvious problems that platinum and other metal based probes can pose for living tissue. The Warwick research team are already beginning to explore how their single walled carbon nanotube based ultramicroelecrodes can be used to measure levels of neurotransmitters.

The new ultramicroelecrodes also open up interesting possibilities for catalysis in fuel cells. Up till now researchers had been aware that this form of carbon nanotubes appeared to be particularly useful in the area of catalysis but there was uncertainty as to whether it was the properties of the carbon nanotubes per se that provide this benefit or whether it was due to impurities in their production. The researchers have been able to use this new method of single walled carbon nanotube assembly to prove that it is actually the properties of the carbon nanotubes themselves that are useful for catalysis. The new carbon nanotube assembly technique brings a further benefit to catalysis applications as the Warwick researchers have been able to use electrodepoistion to quickly and easily apply specific metal coatings to the ready formed single walled carbon nanotube microelectrode networks. This will be of significant benefit to anyone wanting to use single walled carbon nanotube for catalysis in fuel cell technology.

####

About University of Warwick
Warwick is one of the UK’s leading universities, with an acknowledged reputation for excellence in research and teaching for innovation and for links with business and industry. By 2015 Warwick will be in the top 50 world Universities.

For more information, please click here

Contacts:
Professor Julie Macpherson
Department of Chemistry
University of Warwick
Tel: +44 (0)2476 573886

Professor Patrick Unwin:
Department of Chemistry
University of Warwick
+44 (0) 2476 523264


Peter Dunn
Press and Media Relations Manager,
University of Warwick
Tel: +44 (0)24 76 523708
or +44 (0)7767 655860

Copyright © University of Warwick

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

'Find the Lady' in the quantum world: International team of researchers presents method for quantum-mechanical swapping of positions October 18th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Nanotubes/Buckyballs/Fullerenes/Nanorods

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

How to draw electricity from the bloodstream: A one-dimensional fluidic nanogenerator with a high power-conversion efficiency September 11th, 2017

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

Regulation of two-dimensional nanomaterials: New driving force for lithium-ion batteries July 26th, 2017

Sensors

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Single ‘solitons’ promising for optical technologies October 9th, 2017

Two dimensional materials: Advanced molybdenum selenide near infrared phototransistors September 27th, 2017

Enhancing the sensing capabilities of diamonds with quantum properties: A simple method can give diamonds the special properties needed for quantum applications such as sensing magnetic fields September 24th, 2017

Discoveries

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

'Find the Lady' in the quantum world: International team of researchers presents method for quantum-mechanical swapping of positions October 18th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Announcements

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Energy

New nanomaterial can extract hydrogen fuel from seawater: Hybrid material converts more sunlight and can weather seawater's harsh conditions October 4th, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

Fuel Cells

Hydrogen power moves a step closer: Physicists are developing methods of creating renewable fuel from water using quantum technology September 15th, 2017

More durable, less expensive fuel cells: University of Delaware researchers have developed a new technology that could speed up the commercialization of fuel cell vehicles September 5th, 2017

Engineers pioneer platinum shell formation process – and achieve first-ever observation August 11th, 2017

Argonne National Laboratory’s Continuous ALD Technology Licensed Exclusively to Forge Nano July 7th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project