Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nanotube production leaps from sooty mess in test tube to ready formed chemical microsensors

Abstract:
Carbon nanotubes' potential as a super material is blighted by the fact that when first made they often take the form of an unprepossessing pile of sooty black mess in the bottom of a test tube. Now researchers in the University of Warwick's Department of Chemistry have found a way of producing carbon nanotubes in which they instantly form a highly sensitive ready made electric circuit.

Nanotube production leaps from sooty mess in test tube to ready formed chemical microsensors

Warwick, UK | Posted on May 6th, 2008

The research has just been published in a paper entitled "Single-Walled Carbon Nanotube Network Ultramicroelectrodes" by University of Warwick researchers Ioana Dumitrescu, Professor Julie Macpherson, Professor Patrick Unwin, and Neil Wilson in Analytical Chemistry, 2008, 10.1021/ac702518g

The researchers used a form of chemical vapour deposition and lithography to create the ready made disc shaped single walled carbon nanotube based ultramicroelectrodes. The nanotubes deposit themselves flat on a surface in a random but relatively even manner. They also all overlap sufficiently to create a single complete metallic micro-circuit right across the final disc. What is even more impressive is that they take up less than one per cent of the surface area of the disc.

This final property makes these instant ultramicroelecrodes particular useful for the creation of ultra sensitive sensors. The low surface area of the conducting part of the disc means that they can be used to screen out background "noise" and cope with low signal to noise ratios making them up to 1000 times more sensitive than conventional ultramicroelecrodes sensors. This property also produces very fast response times allowing them to respond ten times faster than conventional ultramicroelecrodes.

As these ready made ultramicroelecrodes are carbon based they also open up a range of new possibilities for use in living systems. The biocompatibility of carbon is in stark contrast with the obvious problems that platinum and other metal based probes can pose for living tissue. The Warwick research team are already beginning to explore how their single walled carbon nanotube based ultramicroelecrodes can be used to measure levels of neurotransmitters.

The new ultramicroelecrodes also open up interesting possibilities for catalysis in fuel cells. Up till now researchers had been aware that this form of carbon nanotubes appeared to be particularly useful in the area of catalysis but there was uncertainty as to whether it was the properties of the carbon nanotubes per se that provide this benefit or whether it was due to impurities in their production. The researchers have been able to use this new method of single walled carbon nanotube assembly to prove that it is actually the properties of the carbon nanotubes themselves that are useful for catalysis. The new carbon nanotube assembly technique brings a further benefit to catalysis applications as the Warwick researchers have been able to use electrodepoistion to quickly and easily apply specific metal coatings to the ready formed single walled carbon nanotube microelectrode networks. This will be of significant benefit to anyone wanting to use single walled carbon nanotube for catalysis in fuel cell technology.

####

About University of Warwick
Warwick is one of the UK’s leading universities, with an acknowledged reputation for excellence in research and teaching for innovation and for links with business and industry. By 2015 Warwick will be in the top 50 world Universities.

For more information, please click here

Contacts:
Professor Julie Macpherson
Department of Chemistry
University of Warwick
Tel: +44 (0)2476 573886

Professor Patrick Unwin:
Department of Chemistry
University of Warwick
+44 (0) 2476 523264


Peter Dunn
Press and Media Relations Manager,
University of Warwick
Tel: +44 (0)24 76 523708
or +44 (0)7767 655860

Copyright © University of Warwick

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Production of Zirconium Carbide Nanoparticles at Low Temperature without Thermal Operations July 5th, 2015

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Nanotubes/Buckyballs/Fullerenes

Discovery of nanotubes offers new clues about cell-to-cell communication July 2nd, 2015

NIST Group Maps Distribution of Carbon Nanotubes in Composite Materials July 2nd, 2015

NIST ‘How-To’ Website Documents Procedures for Nano-EHS Research and Testing July 1st, 2015

Cellulose from wood can be printed in 3-D June 17th, 2015

Sensors

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

New micro-supercapacitor structure inspired by the intricate design of leaves: A team of scientists in Korea has devised a new method for making a graphene film for supercapacitors July 2nd, 2015

Carnegie Mellon chemists characterize 3-D macroporous hydrogels: Methods will allow researchers to develop new 'smart' materials June 30th, 2015

Discoveries

Production of Zirconium Carbide Nanoparticles at Low Temperature without Thermal Operations July 5th, 2015

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Announcements

Production of Zirconium Carbide Nanoparticles at Low Temperature without Thermal Operations July 5th, 2015

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Energy

New technology using silver may hold key to electronics advances July 2nd, 2015

Visible Light-Sensitive Photocatalysts Used for Purification of Contaminated Water in Iran June 30th, 2015

June 29th, 2015

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

Fuel Cells

The Hydrogen-Fuel cell will revolutionize the economy of the world: New non-platinum and nanosized catalyst for polymer electrolyte fuel cell June 29th, 2015

X-rays and electrons join forces to map catalytic reactions in real-time: New technique combines electron microscopy and synchrotron X-rays to track chemical reactions under real operating conditions June 29th, 2015

Buckle up for fast ionic conduction June 16th, 2015

A protective shield for sensitive catalysts: Hydrogels block harmful oxygen June 15th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project