Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > News > Multiscale Modeling of Composite Materials

April 26th, 2008

Multiscale Modeling of Composite Materials

Abstract:
Understanding the deformation or thermal behavior of composites has always been a complex problem. One must take into consideration the behavior of the reinforcement (particle, fiber, or whisker), matrix, and, of course, the interface or interphase formed between these components. Clearly, the interplay between the components in a composite is also key. Load transfer from the matrix to the fiber is directly related to the aspect ratio of the fiber, as well as the yield stress of the matrix (or, in brittle composites, the shear strength of the interface). With the advent of new computational methodologies and techniques, not to mention the sheer increase in efficiency and speed of computer processors, multiscale modeling has become an important part of understanding the behavior of composite materials. Multiscale modeling is particularly suited toward composites because of the multiple length scales involved as well as the overall complex nature of composite behavior. The three papers in this section illustrate the importance of multiscale modeling of composites. A variety of numerical computational techniques are used, such as finite-element modeling, crystal plasticity, and atomistic modeling, to understand the behavior of the composite, More importantly, two or more of these techniques are used in combination to stitch together the behavior at different length scales. The paper by A. Misra et al. discusses the deformation behavior of nanoscale metallic multilayered composites. Metallic composites with layers at the nanoscale exhibit very high strengths. The mechanical behavior of these composites was studied in terms of the atomic structure at the interfaces between the layers. The atomic level modeling is particularly needed here because the layer thickness is in the range of a few nanometers. Information obtained from the atomistic modeling, such as the critical stress required for dislocations to overcome the barrier at the interface and be transmitted to adjacent layers, are used in dislocation dynamics simulations to study dislocation-dislocation interactions. The third level of modeling involves crystal plasticity modeling of phenomena on the length scale of a grain and encompasses information from atomistic and dislocation dynamics simulations.

Source:
redorbit.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

World's fastest man-made spinning object could help study quantum mechanics July 20th, 2018

Relax, just break it July 20th, 2018

Future electronic components to be printed like newspapers July 20th, 2018

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

Discoveries

World's fastest man-made spinning object could help study quantum mechanics July 20th, 2018

Relax, just break it July 20th, 2018

Future electronic components to be printed like newspapers July 20th, 2018

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

Materials/Metamaterials

Relax, just break it July 20th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides July 13th, 2018

Carbon is the new black: Researchers use carbon nanotubes to develop clothing that can double as batteries July 10th, 2018

Announcements

World's fastest man-made spinning object could help study quantum mechanics July 20th, 2018

Relax, just break it July 20th, 2018

Future electronic components to be printed like newspapers July 20th, 2018

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project